Constructing bimodal grain structure is a promising approach to achieve the high strength-ductility syn-ergy in Mg alloy.Formation of bimodal grain is closely related to the dynamic and/or static recrystal-lization pr...Constructing bimodal grain structure is a promising approach to achieve the high strength-ductility syn-ergy in Mg alloy.Formation of bimodal grain is closely related to the dynamic and/or static recrystal-lization process,which has not been fully understood in the typical Mg-RE based alloy.In this work,it is claimed for the first time that the minor Ce addition(∼0.3 wt%)into Mg matrix significantly pro-motes the pyramidal<c+a>and non-basal<a>dislocations at the early stage of extrusion,which con-sequently enhances the formation of sub-grain boundaries via the movement and recovery of pyramidal II-type<c+a>dislocations.At this stage,fine sub-grain lamellae are widely observed predominantly due to the low migration rate of sub-grain boundary caused by the limited mobility of<c+a>dislocations.At the later stage,the sub-grains continuously transform into dynamic recrystallized(DRXed)grains that have10¯10Taylor axis and also strong fiber texture,indicating substantial activation of pyramidal II-type<c+a>dislocation.The low mobility of<c+a>dislocations,accompanied with the solute drag from grain boundary(GB)segregation and pinning from nano-phases,cause a sluggish DRX process and thus a bimodal microstructure with ultra-fined DRXed grains,∼0.51μm.The resultant texture hardening and grain refinement hardening effects,originated from bimodal microstructure,result in a yield strength of∼352 MPa,which is exceptional in Mg-Ce dilute alloy.This work clarifies the critical role of Ce addition in tuning recrystallization behavior and mechanical property of magnesium,and can also shed light on designing the other high-performance Mg alloys.展开更多
基金supported by National Key Research and De-velopment Program of China(No.2021YFB3701002)National Nat-ural Science Foundation of China(No.U2167213,51971053)+1 种基金and funded by the Project of Promoting Talents in Liaoning province(No.XLYC1808038).H.C.Pan acknowledges the financial assistance from Young Elite Scientists Sponsorship Program by CAST(2019-2021QNRC001,2019-2021QNRC002,2019-2021QNRC003)the fund from the Fundamental Research Funds for the Central Univer-sities(N2202020).
文摘Constructing bimodal grain structure is a promising approach to achieve the high strength-ductility syn-ergy in Mg alloy.Formation of bimodal grain is closely related to the dynamic and/or static recrystal-lization process,which has not been fully understood in the typical Mg-RE based alloy.In this work,it is claimed for the first time that the minor Ce addition(∼0.3 wt%)into Mg matrix significantly pro-motes the pyramidal<c+a>and non-basal<a>dislocations at the early stage of extrusion,which con-sequently enhances the formation of sub-grain boundaries via the movement and recovery of pyramidal II-type<c+a>dislocations.At this stage,fine sub-grain lamellae are widely observed predominantly due to the low migration rate of sub-grain boundary caused by the limited mobility of<c+a>dislocations.At the later stage,the sub-grains continuously transform into dynamic recrystallized(DRXed)grains that have10¯10Taylor axis and also strong fiber texture,indicating substantial activation of pyramidal II-type<c+a>dislocation.The low mobility of<c+a>dislocations,accompanied with the solute drag from grain boundary(GB)segregation and pinning from nano-phases,cause a sluggish DRX process and thus a bimodal microstructure with ultra-fined DRXed grains,∼0.51μm.The resultant texture hardening and grain refinement hardening effects,originated from bimodal microstructure,result in a yield strength of∼352 MPa,which is exceptional in Mg-Ce dilute alloy.This work clarifies the critical role of Ce addition in tuning recrystallization behavior and mechanical property of magnesium,and can also shed light on designing the other high-performance Mg alloys.