High-quality entangling gates are crucial for scalable quantum information processing.Implementing all-microwave two-qubit gates on fixed-frequency transmons offers advantages in reducing wiring complexity,but the gat...High-quality entangling gates are crucial for scalable quantum information processing.Implementing all-microwave two-qubit gates on fixed-frequency transmons offers advantages in reducing wiring complexity,but the gate performance is often limited due to the residual ZZ interaction and the frequency crowding problem.Here,we introduce a novel scheme that enables a microwave drive-activated CZ gate compatible with the coupler structure to suppress the residual ZZ interaction.The microwave drive is applied to the coupler and the microwave drive frequency remains far detuned from the system’s transition frequency to alleviate the frequency crowding problem.We model the gate process analytically and demonstrate a theoretical gate fidelity up to 99.9%numerically.Our scheme is compatible with current coupler-structure-based circuits,and insensitive to microwave crosstalk,showing a possible path for all-microwave quantum operations at scale.展开更多
基金Project supported by the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0303030002)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0670000)the National Key Research and Development Program of China(Grant No.2023YFB4404904).
文摘High-quality entangling gates are crucial for scalable quantum information processing.Implementing all-microwave two-qubit gates on fixed-frequency transmons offers advantages in reducing wiring complexity,but the gate performance is often limited due to the residual ZZ interaction and the frequency crowding problem.Here,we introduce a novel scheme that enables a microwave drive-activated CZ gate compatible with the coupler structure to suppress the residual ZZ interaction.The microwave drive is applied to the coupler and the microwave drive frequency remains far detuned from the system’s transition frequency to alleviate the frequency crowding problem.We model the gate process analytically and demonstrate a theoretical gate fidelity up to 99.9%numerically.Our scheme is compatible with current coupler-structure-based circuits,and insensitive to microwave crosstalk,showing a possible path for all-microwave quantum operations at scale.