期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Structural modeling of sandwich structures with lightweight cellular cores 被引量:12
1
作者 T.Liu z.c.deng T.J.Lu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第5期545-559,共15页
An effective single layered finite element (FE) computational model is proposed to predict the structural behavior of lightweight sandwich panels having two dimensional (2D) prismatic or three dimensional (3D) t... An effective single layered finite element (FE) computational model is proposed to predict the structural behavior of lightweight sandwich panels having two dimensional (2D) prismatic or three dimensional (3D) truss cores. Three different types of cellular core topology are considered: pyramidal truss core (3D), Kagome truss core (3D) and corrugated core (2D), representing three kinds of material anisotropy: orthotropic, monoclinic and general anisotropic. A homogenization technique is developed to obtain the homogenized macroscopic stiffness properties of the cellular core. In comparison with the results obtained by using detailed FE model, the single layered computational model can give acceptable predictions for both the static and dynamic behaviors of orthotropic truss core sandwich panels. However, for non-orthotropic 3D truss cores, the predictions are not so well. For both static and dynamic behaviors of a 2D corrugated core sandwich panel, the predictions derived by the single layered computational model is generally acceptable when the size of the unit cell varies within a certain range, with the predictions for moderately strong or strong corrugated cores more accurate than those for weak cores. 展开更多
关键词 Cellular material Sandwich panel HOMOGENIZATION Finite element
在线阅读 下载PDF
Snap-through of an elastica under bilateral displacement control at a material point 被引量:2
2
作者 Q.Wang H.L.Zou z.c.deng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第3期727-734,共8页
Snap-through phenomenon widely occurs for elastic systems,where the systems lose stability at critical points.Here snapthrough of an elastica under bilateral displacement control at a material point is studied,by rega... Snap-through phenomenon widely occurs for elastic systems,where the systems lose stability at critical points.Here snapthrough of an elastica under bilateral displacement control at a material point is studied,by regarding the whole elastica as two components,i.e.,pinned-clamped elasticas.Specifically,stiffness-curvature curves of two pinned-clamped elasticas are firstly efficiently located based on the second-order mode,which are used to determine the shapes of two components.Similar transformations are used to assemble two components together to form the whole elastica,which reveals four kinds of shapes.One advantage of this way compared with other methods such as the shooting method is that multiple coexisting solutions can be located accurately.O n the load-deflection curves,four branches correspond to four kinds of shapes and first two branches are symmetrical to the last two branches relative to the original point.For the bilateral displacement control,the critical points can only appear at saddle-node bifurcations,which is different to that for the unilateral displacement control.Specifically,one critical point is found on the first branch and two critical points are found on the secondary branch.In addition,the snap-through among different branches can be well explained with these critical points. 展开更多
关键词 ELASTICA SNAP-THROUGH Critical points BUCKLING Displacement control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部