The retrogression and re-aging(RRA)processes,aimed mainly at tailoring intergranular precipitates,could significantly improve the corrosion resistance(i.e.,stress corrosion cracking resistance)without considerably dec...The retrogression and re-aging(RRA)processes,aimed mainly at tailoring intergranular precipitates,could significantly improve the corrosion resistance(i.e.,stress corrosion cracking resistance)without considerably decreasing the strength,which signifies that an efficient control of the size,distribution and evolution of intergranular and intragranular precipitates becomes critical for the integrated properties of the(mid-)thick high-strength Al alloy plates.Compared to RRA process with retrogression at200℃ (T77),this study investigated the impact of a modified RRA process(MT77)with lower retrogression temperatures(155-175℃ )and first-stage under-aging on the properties of a high-strength AA7050 Al alloy,in combination with detailed precipitate characterization.The study showed that the strength/microhardness of the RRA-treated alloys decreased with raising retrogression temperature and/or prolonging retrogression time,along with the increased electrical conductivity.The rapid responsiveness of microstructure/property typical of retrogression at 200℃ was obviously postponed or decreased by using MT77 process with longer retrogression time that was more suitable for treating the(mid-)thick plates.On the other hand,higher retrogression temperature facilitated more intragranularηprecipitates,coarse intergranular precipitates and wide precipitate free zones,which prominently increased the electrical conductivity alongside a considerable strength loss as compared to the MT77-treated alloys.With the preferred MT77 process,the high strength approaching T6 level as well as good corrosion resistance was achieved.However,though a relatively homogeneous through-thickness strength was obtained,some small discrepancies of properties between the central and surface areas of an 86-mm thick 7050 Al alloy plate were observed,possibly related to the quenching sensitivity.The precipitate evolution and mechanistic connection to the properties were discussed and reviewed for high-strength Al alloys along with suggestions for further RRA optimization.展开更多
The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of...The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.展开更多
基金financial support from the Constructed Project for Key Laboratory of Beijing,China(No.BJSJ2019004)the State Key Laboratory for Advanced Metals and Materials of China(No.2018Z-23)+2 种基金the Major State Research and Development Program of China(No.2016YFB0300801)the National Natural Science Foundation of China(No.51401016)the supports from International S&T Cooperation Projects of Nanjing,China(No.201818014)。
文摘The retrogression and re-aging(RRA)processes,aimed mainly at tailoring intergranular precipitates,could significantly improve the corrosion resistance(i.e.,stress corrosion cracking resistance)without considerably decreasing the strength,which signifies that an efficient control of the size,distribution and evolution of intergranular and intragranular precipitates becomes critical for the integrated properties of the(mid-)thick high-strength Al alloy plates.Compared to RRA process with retrogression at200℃ (T77),this study investigated the impact of a modified RRA process(MT77)with lower retrogression temperatures(155-175℃ )and first-stage under-aging on the properties of a high-strength AA7050 Al alloy,in combination with detailed precipitate characterization.The study showed that the strength/microhardness of the RRA-treated alloys decreased with raising retrogression temperature and/or prolonging retrogression time,along with the increased electrical conductivity.The rapid responsiveness of microstructure/property typical of retrogression at 200℃ was obviously postponed or decreased by using MT77 process with longer retrogression time that was more suitable for treating the(mid-)thick plates.On the other hand,higher retrogression temperature facilitated more intragranularηprecipitates,coarse intergranular precipitates and wide precipitate free zones,which prominently increased the electrical conductivity alongside a considerable strength loss as compared to the MT77-treated alloys.With the preferred MT77 process,the high strength approaching T6 level as well as good corrosion resistance was achieved.However,though a relatively homogeneous through-thickness strength was obtained,some small discrepancies of properties between the central and surface areas of an 86-mm thick 7050 Al alloy plate were observed,possibly related to the quenching sensitivity.The precipitate evolution and mechanistic connection to the properties were discussed and reviewed for high-strength Al alloys along with suggestions for further RRA optimization.
基金supported by the National Key R&D Program of China under Contract No.2022YFA1602200the International Partnership Program of the Chineses Academy of Sciences under Grant No.211134KYSB20200057the STCF Key Technology Research and Development Project.
文摘The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.