Background:Periodontitis is characterized by alveolar bone resorption,aggravated by osteoblast dysfunction,and associated with intracellular oxidative stress linked to the nuclear factor erythroid 2-related factor 2(N...Background:Periodontitis is characterized by alveolar bone resorption,aggravated by osteoblast dysfunction,and associated with intracellular oxidative stress linked to the nuclear factor erythroid 2-related factor 2(NRF2)level.We evaluated the molecular mechanism of periodontitis onset and development and the role of NRF2 in osteogenic differentiation.Methods:Primary murine mandibular osteoblasts were extracted and exposed to Porphyromonas gingivalis lipopolysaccharide(Pg-LPS)or other stimuli.Reactive oxygen species(ROS)and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide(JC-1)staining were used to detect intracellular oxidative stress.Alkaline phosphatase staining and alizarin red S staining were used to detect the osteogenic differentiation of osteoblasts.Immunofluorescence and western blotting were used to determine the changes in the mitogen-activated protein kinase(MAPK)pathway and related molecule activities.Immunofluorescence colocalization and co-immunoprecipitation were performed to examine the nuclear translocation of NRF2 and its interaction with dual-specific phosphatase 1(DUSP1)in cells.Results:Ligated tissue samples showed higher alveolar bone resorption rate and lower NRF2 level than healthy periodontal tissue samples.Pg-LPS increased intracellular oxidative stress levels and inhibited osteogenic differentiation,whereas changes in NRF2 expression were correlated with changes in the oxidative stress and osteogenesis rate.NRF2 promoted the dephosphorylation of the MAPK pathway by nuclear translocation and the upregulation of DUSP1 expression,thus enhancing the osteogenic differentiation capacity of mandibular osteoblasts.The interaction between NRF2 and DUSP1 was observed.Conclusions:NRF2 and its nuclear translocation can regulate the osteogenic differentiation of mandibular osteoblasts under Pg-LPS conditions by interacting with DUSP1 in a process linked to the MAPK pathway.These findings form the basis of periodontitis treatment.展开更多
Conventional gas sensing materials(e.g.,metal oxides)suffer from deficient sensitivity and serve cross-sensitivity issues due to the lack of efficient adsorption sites.Herein,the heteroatom atomically doping strategy ...Conventional gas sensing materials(e.g.,metal oxides)suffer from deficient sensitivity and serve cross-sensitivity issues due to the lack of efficient adsorption sites.Herein,the heteroatom atomically doping strategy is demonstrated to significantly enhance the sensing performance of metal oxides-based gas sensing materials.Specifically,the Sn atoms were incorporated into porous Fe_(2)O_(3)in the form of atomically dispersed sites.As revealed by X-ray absorption spectroscopy and atomic-resolution scanning transmission electron microscopy,these Sn atoms successfully occupy the Fe sites in the Fe_(2)O_(3)lattice,forming the unique Sn-O-Fe sites.Compared to Fe-O-Fe sites(from bare Fe_(2)O_(3))and Sn-O-Sn sites(from SnO_(2)/Fe_(2)O_(3)with high Sn loading),the Sn-O-Fe sites on porous Fe_(2)O_(3)exhibit a superior sensitivity(Rg/Ra=2646.6)to 1 ppm NO_(2),along with dramatically increased selectivity and ultra-low limits of detection(10 ppb).Further theoretical calculations suggest that the strong adsorption of NO_(2)on Sn-O-Fe sites(N atom on Sn site,O atom on Fe site)contributes a more efficient gas response,compared to NO_(2)on Fe-O-Fe sites and other gases on Sn-O-Fe sites.Moreover,the incorporated Sn atoms reduce the bandgap of Fe_(2)O_(3),not only facilitating the electron release but also increasing the NO_(2)adsorption at a low working temperature(150°C).This work introduces an effective strategy to construct effective adsorption sites that show a unique response to specific gas molecules,potentially promoting the rational design of atomically modified gas sensing materials with high sensitivity and high selectivity.展开更多
Eye depth is an important agronomic trait affecting tubers'appearance,quality,and processing suitability.Hence,cultivating varieties with uniform shapes and shallow eye depth are important goals for potato breedin...Eye depth is an important agronomic trait affecting tubers'appearance,quality,and processing suitability.Hence,cultivating varieties with uniform shapes and shallow eye depth are important goals for potato breeding.In this study,based on the primary mapping of the tuber eyedepth locus using a small primary-segregating population,a large secondary-segregating population with 2100 individuals was used to map the eye-depth locus further.A major quantitative trait locus for eye-depth on chromosome 10 was identified(designated qEyd10.1)using BSAseq and traditional QTL mapping methods.The qEyd10.1 could explain 55.0%of the eye depth phenotypic variation and was further narrowed to a 309.10 kb interval using recombinant analysis.To predict candidate genes,tissue sectioning and RNA-seq of the specific tuber tissues were performed.Genes encoding members of the peroxidase superfamily with likely roles in indole acetic acid regulation were considered the most promising candidates.These results will facilitate marker-assisted selection for the shallow-eye trait in potato breeding and provide a solid basis for eye-depth gene cloning and the analysis of tuber eye-depth regulatory mechanisms.展开更多
Mixed-lanthanide(Ln) luminescent materials have important application values in ratiometric temperature sensing.Hydrogen-bonded organic frameworks(HOFs) offer a self-supporting network to conveniently tune multiple Ln...Mixed-lanthanide(Ln) luminescent materials have important application values in ratiometric temperature sensing.Hydrogen-bonded organic frameworks(HOFs) offer a self-supporting network to conveniently tune multiple Ln^(3+)ions,but challenges still exist in material design.In this work,we selected two simple organic molecules as hydrogen-bonded building blocks,which are melamine(MA) and 2,5-pyridinedicarboxylic acid(PDC) owning the suitable energy to sensitize Tb^(3+)and Eu^(3+)ions.MA assists PDC molecules to support the network in a new HOF(MA-PDC),where the abundant carboxylic groups enable Ln^(3+)ions to combine with the HOF.Based on the effective energy transfer process,the emission of Tb^(3+)and Eu^(3+)from TbxEu1-x@MA-PDC(x=0.75,0.85,0.90) shows the obvious temperature dependence,which benefits ratiometric temperature detection.Taking Tb0.85Eu0.15@MA-PDC as an example,when temperature varies from 303 to 443 K,the intensity ratio exhibits distinct S-type response based on Mott-Seitz model.It also behaves good relative sensitivity(1.03%/K at 383 K),low temperature resolution(0.059 K) and large reproducibility(>96%).This work demonstrates that functionalization of a simple-component HOF with mixed Ln^(3+)ions is a fantastic strategy to develop novel ratiometric thermometers of both low cost and good performance.展开更多
Water is the fundamental natural resource that supports life,ecosystems and human society.Thus studying the water cycle is important for sustainable development.In the context of global climate change,a better under-s...Water is the fundamental natural resource that supports life,ecosystems and human society.Thus studying the water cycle is important for sustainable development.In the context of global climate change,a better under-standing of the water cycle is needed.This study summarises current research and highlights future directions of water science from four perspectives:(i)the water cycle;(ii)hydrologic processes;(iii)coupled natural-social water systems;and(iv)integrated watershed management.Emphasis should be placed on understanding the joint impacts of climate change and human activities on hydrological processes and water resources across temporal and spatial scales.Understanding the interactions between land and atmosphere are keys to addressing this is-sue.Furthermore systematic approaches should be developed for large basin studies.Areas for focused research include:variations of cryosphere hydrological processes in upper alpine zones;and human activities on the wa-ter cycle and relevant biogeochemical processes in middle-lower reaches.Because the water cycle is naturally coupled with social characteristics across multiple scales,multi-process and multi-scale models are needed.Hy-drological studies should use this new paradigm as part of water-food-energy frontier research.This will help to promote interdisciplinary study across natural and social sciences in accordance with the United Nation’s sustainable development goals.展开更多
Self-nanoemulsifying systems(SNEs) have excellent ability to improve the solubility ofpoorly water-soluble drugs(PWSD). However, SNEs are likely to be degraded in gastroin-testinal(GIT) when their surface is recognize...Self-nanoemulsifying systems(SNEs) have excellent ability to improve the solubility ofpoorly water-soluble drugs(PWSD). However, SNEs are likely to be degraded in gastroin-testinal(GIT) when their surface is recognized by lipase/co-lipase enzyme complex, result-ing in rapid release and precipitation of encapsulated drugs. The precipitates are then cap-tured and removed by intestinal mucus, reducing the delivery efficacy of SNEs. Herein, theamphiphilic polymer Pluronic? F127 was incorporated into long and short-chain triglyc-erides(LCT, SCT) based SNEs to diminish the recognition and therefore minimized theirdegradation by enzymes and clearance by mucus. The SNEs were characterized in termsof particle size, zeta potential and stability. Ex vivo multiple particles tracking studies wereperformed by adding particle solution into fresh rat mucus. Cellular uptake of SNEs wereconducted by using E12 cells, the absorption and distribution in small intestine were alsostudied after oral administration in male Sprague-Dawley(SD) rats. The in vitro digestionrate of SNEs were found to be in following order SCT-SNE > SCT-F127-SNE > LCT-SNE > LCT-F127-SNE. Moreover, the LCT-F127-SNE was found to be most effective in enhancing cellularuptake, resulting in 3.5-fold, 2.1-fold and 1.7-fold higher than that of SCT-SNE, LCT-SNE andSCT-F127-SNE, respectively. After incubating the SNE with E12 cells, the LCT-F127-SNE ex-hibited the highest amount regarding both mucus penetration and cellular uptake, with anuptake amount number(via bicinchoninic acid(BCA) analysis) of 3.5-fold, 2.1-fold and 1.7-fold higher than that of SCT-SNE, LCT-SNE and SCT-F127-SNE, respectively. The in vivo results revealed that orally administered LCT-F127-SNE could significantly increase the bioavailability of Cyclosporine A(CsA), which was approximately 2.43-fold, 1.33-fold and 1.80-fold higher than that of SCT-SNE, SCT-F127-SNE and LCT-SNE, respectively. We address in this work that F127-modified SNEs have potentials to improve oral drug absorption by significantly reducing gastrointestinal enzymatic degradation and simultaneously enhancing mucus penetration.展开更多
Rice planting(RP)is significant to methane(CH4_(4))emissions from paddy fields,but its effect on the relative contribution of the acetoclastic methanogenesis to total CH4_(4) production(F_(ac))and the fraction of CH4_...Rice planting(RP)is significant to methane(CH4_(4))emissions from paddy fields,but its effect on the relative contribution of the acetoclastic methanogenesis to total CH4_(4) production(F_(ac))and the fraction of CH4_(4) oxidized(Fox)is poorly understood.To quantify the responses of the F_(ac) and Fox to RP,we investigated CH4_(4) fluxes,CH4_(4) production and oxidation potentials,dissolved CH4_(4) concentrations,and their stable carbon isotopes in a flooded paddy soil.The mcrA and pmoA gene copies were also determined by quantitative polymerase chain reaction(qPCR).Compared with the unplanted soil(control,CK),the seasonal CH4_(4) emissions from the planted soil were significantly enhanced,13.6 times,resulting in large decreases in the CH4_(4) concentrations in the soil solution.This indicated that much more CH4_(4) was released into the atmosphere by the RP than was stored in the soils.Acetoclastic methanogenesis became more important from the tillering stage(TS)to the ripening stage(RS)for the CK,with F_(ac) values increased from 17%-20% to 46%-55%.With RP,the F_(ac) values were enhanced by 10%-20%,and it significantly increased the copy numbers of the mcrA gene at the four rice stages(TS,booting stage(BS),grain-filling stage(GS),and RS).Furthermore,the effect of the RP on the abundance of the mcrA gene was highly concurrent with the effect on the F_(ac) values.At the TS,the Fox values at the soil-water interface were around 50%-75% for the CK,being 15%-20% lower than those of the RP in the rhizosphere.It increased to 65%-100% at the GS,but was reduced by 20%-30% after the RP.These differences might be because the copy numbers of the pmoA gene were significantly raised at the TS while lowered at the GS by the RP.This was further demonstrated by the strong correlations between the effect of the RP on the abundance of the pmoA gene and the effect on the Fox values.These findings suggest that RP markedly impacts on the abundances of the mcrA and pmoA genes,affecting the pathway of CH4_(4) production and the fraction of CH4_(4) oxidization,respectively.展开更多
Surface vacancy defects,as the bridge between theoretical structural study and the design of heterogenous catalysts,have captured much attention.This work develops a metal-organic framework-engaged replacement-pyrolys...Surface vacancy defects,as the bridge between theoretical structural study and the design of heterogenous catalysts,have captured much attention.This work develops a metal-organic framework-engaged replacement-pyrolysis approach to obtain highly dispersed Ru nanoparticles immobilized on the vacancy-rich Ni-NiO@C hollow microsphere(Ru/Ni-NiO@C).Fine annealing at 400°C introduces nickel and oxygen vacancies on Ru/Ni-NiO@C surface,resulting in an improved electrical conductivity and rapid mass-charge transfer efficiency.Ru/Ni-NiO@C with a hollow micro/nanostructure and interconnected meso-porosity favors the maximal exposure of abundant active sites and elevation of hydrogen oxidation reaction(HOR)activity.Experimental results and density functional theory(DFT)calculations reveal that an electronic effect between Ru and Ni-NiO@C,in conjunction with nickel/oxygen vacancies in the NiO species could synergistically optimize hydrogen binding energy(HBE)and hydroxide binding energy(OHBE).The HBE and OHBE optimizations thus created confer Ru/Ni-NiO@C with a mass activity over 7.75 times higher than commercial Pt/C.Our work may provide a constructive route to make a breakthrough in elevating the hydrogen electrocatalytic performance.展开更多
The construction of oxide/metal composite catalysts is a competent means of exploiting the electronic interactions between oxide/metal to enhance catalytic activity.In this work,we construct a novel heterogeneous comp...The construction of oxide/metal composite catalysts is a competent means of exploiting the electronic interactions between oxide/metal to enhance catalytic activity.In this work,we construct a novel heterogeneous composite(Ru/HfO_(2)-NC)with Ru/HfO2nanoparticles nested in nitrogen-doped porous carbon via a zeolitic imidazole frameworks-assisted(ZIF)co-precipitation and calcination approach.In particular,ZIF guides an in-situ construction of nested configuration and confines the scattered nanoparticles.Strikingly,Ru/HfO_(2)-NC exhibits unusual ORR activity,superb durability,and methanol tolerance in0.1 M KOH solution with high half-wave potential(E1/2)of 0.83 V and follows a near-4e-reaction pathway.Additionally,the ZAB assembled with cathodic Ru/HfO_(2)-NC outputs a power density of 157.3 m W cm^(-2),a specific capacity of 775 mA h g-1Zn,and a prolonged lifespan of 258 h at 5 mA cm^(-2).Meanwhile,the catalyst has demonstrated potential applicability in flexible ZAB.As suggested by experimental results and density functional theory(DFT)analysis,the remarkable property possibly originated from the optimization of the adsorption and desorption of reactive intermediates caused by the reconfiguration of the electronic structure between Ru and HfO_(2).展开更多
The techniques for oceanographic observation have made great progress in both space-time coverage and quality, which make the observation data present some characteristics of big data. We explore the essence of global...The techniques for oceanographic observation have made great progress in both space-time coverage and quality, which make the observation data present some characteristics of big data. We explore the essence of global ocean dynamic via constructing a complex network with regard to sea surface temperature. The global ocean is divided into discrete regions to represent the nodes of the network. To understand the ocean dynamic behavior, we introduce the Gaussian mixture models to describe the nodes as limit-cycle oscillators. The interacting dynamical oscillators form the complex network that simulates the ocean as a stochastic system. Gaussian probability matching is suggested to measure the behavior similarity of regions. Complex network statistical characteristics of the network are analyzed in terms of degree distribution, clustering coefficient and betweenness. Experimental results show a pronounced sensitivity of network characteristics to the climatic anomaly in the oceanic circulation. Particularly, the betweenness reveals the main pathways to transfer thermal energy of El Niño–Southern oscillation. Our works provide new insights into the physical processes of ocean dynamic, as well as climate changes and ocean anomalies.展开更多
The pseudo-magnetic field,an artificial synthetic gauge field,has attracted intense research interest in the classical wave system.The strong pseudo-magnetic field is realized in a two-dimensional photonic crystal(PhC...The pseudo-magnetic field,an artificial synthetic gauge field,has attracted intense research interest in the classical wave system.The strong pseudo-magnetic field is realized in a two-dimensional photonic crystal(PhC)by introducing the uniaxial linear gradient deformation.The emergence of the pseudomagnetic field leads to the quantization of Landau levels.The quantum-Hall-like edge states between adjacent Landau levels are observed in our designed experimental implementation.The combination of two reversed gradient PhCs gives rise to the spatially nonuniform pseudo-magnetic field.The propagation of the large-area edge state and the interesting phenomenon of the snake state induced by the nonuniform pseudo-magnetic field is experimentally demonstrated in a PhC heterostructure.This provides a good platform to manipulate the transport of electromagnetic waves and to design useful devices for information processing.展开更多
Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR)...Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance.展开更多
Benzimidazoles are very important chemical materials in the pharmaceutical industry,and the most common synthetic route is cyclization of o-phenylenediamine with carbon sources,in which utilization of inexpensive and ...Benzimidazoles are very important chemical materials in the pharmaceutical industry,and the most common synthetic route is cyclization of o-phenylenediamine with carbon sources,in which utilization of inexpensive and abundant CO_(2)as C1 source is very impressive.Porous aromatic frameworks(PAFs)with highly desired skeletons have attracted great attentions in gas capture and catalysis.Herein,B-based PAF-165 and PAF-166 are designed and synthesized via Friedel-Crafts alkylation reaction,which present high surface areas as well as high stability.Benefiting from the abundant electron-deficient B centers,both PAFs exhibit excellent selective CO_(2)adsorption abilities.The presence of sterically hindered B units in PAFs can act as Lewis acid active sites for the frustrated Lewis pairs(FLPs)in situ formation with ophenylenediamine,thus promoting the synthesis of benzimidazole.The optimal reaction conditions for o-phenylenediamine cyclization with PAF catalysts are explored,and the reaction mechanism is also proposed.This work provides feasible ideas for incorporating FLPs within porous materials as reusable heterogeneous catalysts for CO_(2)capture and conversion.展开更多
Application of transition metal boride(TMB) catalysts towards hydrolysis of NaBH_(4) holds great significance to help relieve the energy crisis. Herein, we present a facile and versatile metal-organic framework(MOF) a...Application of transition metal boride(TMB) catalysts towards hydrolysis of NaBH_(4) holds great significance to help relieve the energy crisis. Herein, we present a facile and versatile metal-organic framework(MOF) assisted strategy to prepare Co_(2)B-CoPO_x with massive boron vacancies by introducing phytic acid(PA) cross-linked Co complexes that are acquired from reaction of PA and ZIF-67 into cobalt boride. The PA etching effectively breaks down the structure of ZIF-67 to create more vacancies, favoring the maximal exposure of active sites and elevation of catalytic activity. Experimental results demonstrate a drastic electronic interaction between Co and the dopant phosphorous(P), thereby the robustly electronegative P induces electron redistribution around the metal species, which facilitates the dissociation of B-H bond and the adsorption of H_(2)O molecules. The vacancy-rich Co_(2)B-CoPO_x catalyst exhibits scalable performance, characterized by a high hydrogen generation rate(HGR) of 7716.7 m L min^(-1)g^(-1) and a low activation energy(Ea) of 44.9 k J/mol, rivaling state-of-the-art catalysts. This work provides valuable insights for the development of advanced catalysts through P doping and boron vacancy engineering and the design of efficient and sustainable energy conversion systems.展开更多
Graphene is the thinest nanomaterial known in the world,which has unique electronic mobility,super specific surface area,high mechanical strength,excellent corrosion resistance and surface chemical structure.Due to it...Graphene is the thinest nanomaterial known in the world,which has unique electronic mobility,super specific surface area,high mechanical strength,excellent corrosion resistance and surface chemical structure.Due to its special nanostructure and excellent physical and chemical properties,graphene has a broad application prospect in the fields of electronics,optics,magnetism,biomedicine,catalysis,energy storage and sensors.In order to better develop and utilize graphene data,this paper reviewed the structural characteristics of graphene,as well as its research progress in biosensors,bio-imaging,aerogel and other biomedical fields,hoping to provide scientific basis for better development of graphene and the development of graphene pharmaceutical products.展开更多
Valley topological photonic crystals(TPCs),which are robust against local disorders and structural defects,have attracted great research interest,from theoretical verification to technical applications.However,previou...Valley topological photonic crystals(TPCs),which are robust against local disorders and structural defects,have attracted great research interest,from theoretical verification to technical applications.However,previous works mostly focused on the robustness of topologically protected edge states and little attention was paid to the importance of the photonic bandgaps(PBGs),which hinders the implementation of various multifrequency functional topological photonic devices.Here,by systematically studying the relationship between the degree of symmetry breaking and the working bandwidth of the edge states,we present spoof surface plasmon polariton valley TPCs with broadband edge states and engineered PBGs,where the operation frequency is easy to adjust.Furthermore,by connecting valley TPCs operating at different frequencies,a broadband multifunctional frequency-dependent topological photonic device with selectively directional light transmission is fabricated and experimentally demonstrated,achieving the functions of wavelength division multiplexing and add–drop multiplexing.We provide an effective and insightful method for building multi-frequency topological photonic devices.展开更多
基金supported by the National Natural Science Foundation of China(Nos.82170954 and 82301066)the Medical Science and Technology Project of Zhejiang Province of China(No.2024KY1064)the Zhejiang Provincial Natural Science Foundation of China(No.LQN25H140005)。
文摘Background:Periodontitis is characterized by alveolar bone resorption,aggravated by osteoblast dysfunction,and associated with intracellular oxidative stress linked to the nuclear factor erythroid 2-related factor 2(NRF2)level.We evaluated the molecular mechanism of periodontitis onset and development and the role of NRF2 in osteogenic differentiation.Methods:Primary murine mandibular osteoblasts were extracted and exposed to Porphyromonas gingivalis lipopolysaccharide(Pg-LPS)or other stimuli.Reactive oxygen species(ROS)and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide(JC-1)staining were used to detect intracellular oxidative stress.Alkaline phosphatase staining and alizarin red S staining were used to detect the osteogenic differentiation of osteoblasts.Immunofluorescence and western blotting were used to determine the changes in the mitogen-activated protein kinase(MAPK)pathway and related molecule activities.Immunofluorescence colocalization and co-immunoprecipitation were performed to examine the nuclear translocation of NRF2 and its interaction with dual-specific phosphatase 1(DUSP1)in cells.Results:Ligated tissue samples showed higher alveolar bone resorption rate and lower NRF2 level than healthy periodontal tissue samples.Pg-LPS increased intracellular oxidative stress levels and inhibited osteogenic differentiation,whereas changes in NRF2 expression were correlated with changes in the oxidative stress and osteogenesis rate.NRF2 promoted the dephosphorylation of the MAPK pathway by nuclear translocation and the upregulation of DUSP1 expression,thus enhancing the osteogenic differentiation capacity of mandibular osteoblasts.The interaction between NRF2 and DUSP1 was observed.Conclusions:NRF2 and its nuclear translocation can regulate the osteogenic differentiation of mandibular osteoblasts under Pg-LPS conditions by interacting with DUSP1 in a process linked to the MAPK pathway.These findings form the basis of periodontitis treatment.
基金supported by the National Key Research and Development Project of China(Grant No.2022YFB3205500)the National Natural Science Foundation of China(Grant No.12275190,12105201)+2 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2024ZB723)the Shenzhen Research Funding Program(JCYJ20230807154402004)supported by the Collaborative Innovation Center of Suzhou Nano Science&Technology,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),the 111 Project,the Joint International Research Laboratory of Carbon-Based Functional Materials and Devices,and the Suzhou Key Laboratory of Functional Nano&Soft Materials and Soochow University-Western University Centre for Synchrotron Radiation Research.
文摘Conventional gas sensing materials(e.g.,metal oxides)suffer from deficient sensitivity and serve cross-sensitivity issues due to the lack of efficient adsorption sites.Herein,the heteroatom atomically doping strategy is demonstrated to significantly enhance the sensing performance of metal oxides-based gas sensing materials.Specifically,the Sn atoms were incorporated into porous Fe_(2)O_(3)in the form of atomically dispersed sites.As revealed by X-ray absorption spectroscopy and atomic-resolution scanning transmission electron microscopy,these Sn atoms successfully occupy the Fe sites in the Fe_(2)O_(3)lattice,forming the unique Sn-O-Fe sites.Compared to Fe-O-Fe sites(from bare Fe_(2)O_(3))and Sn-O-Sn sites(from SnO_(2)/Fe_(2)O_(3)with high Sn loading),the Sn-O-Fe sites on porous Fe_(2)O_(3)exhibit a superior sensitivity(Rg/Ra=2646.6)to 1 ppm NO_(2),along with dramatically increased selectivity and ultra-low limits of detection(10 ppb).Further theoretical calculations suggest that the strong adsorption of NO_(2)on Sn-O-Fe sites(N atom on Sn site,O atom on Fe site)contributes a more efficient gas response,compared to NO_(2)on Fe-O-Fe sites and other gases on Sn-O-Fe sites.Moreover,the incorporated Sn atoms reduce the bandgap of Fe_(2)O_(3),not only facilitating the electron release but also increasing the NO_(2)adsorption at a low working temperature(150°C).This work introduces an effective strategy to construct effective adsorption sites that show a unique response to specific gas molecules,potentially promoting the rational design of atomically modified gas sensing materials with high sensitivity and high selectivity.
基金funded by the National Natural Science Foundation of China(Grant No.31801421)the Chinese Academy of Agricultural Sciences Innovation Project(Grant No.CAAS-ASTIPIVFCAAS).
文摘Eye depth is an important agronomic trait affecting tubers'appearance,quality,and processing suitability.Hence,cultivating varieties with uniform shapes and shallow eye depth are important goals for potato breeding.In this study,based on the primary mapping of the tuber eyedepth locus using a small primary-segregating population,a large secondary-segregating population with 2100 individuals was used to map the eye-depth locus further.A major quantitative trait locus for eye-depth on chromosome 10 was identified(designated qEyd10.1)using BSAseq and traditional QTL mapping methods.The qEyd10.1 could explain 55.0%of the eye depth phenotypic variation and was further narrowed to a 309.10 kb interval using recombinant analysis.To predict candidate genes,tissue sectioning and RNA-seq of the specific tuber tissues were performed.Genes encoding members of the peroxidase superfamily with likely roles in indole acetic acid regulation were considered the most promising candidates.These results will facilitate marker-assisted selection for the shallow-eye trait in potato breeding and provide a solid basis for eye-depth gene cloning and the analysis of tuber eye-depth regulatory mechanisms.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China (LY24E020005)Industrial Key Projects of Jinhua City(2023-1-090)。
文摘Mixed-lanthanide(Ln) luminescent materials have important application values in ratiometric temperature sensing.Hydrogen-bonded organic frameworks(HOFs) offer a self-supporting network to conveniently tune multiple Ln^(3+)ions,but challenges still exist in material design.In this work,we selected two simple organic molecules as hydrogen-bonded building blocks,which are melamine(MA) and 2,5-pyridinedicarboxylic acid(PDC) owning the suitable energy to sensitize Tb^(3+)and Eu^(3+)ions.MA assists PDC molecules to support the network in a new HOF(MA-PDC),where the abundant carboxylic groups enable Ln^(3+)ions to combine with the HOF.Based on the effective energy transfer process,the emission of Tb^(3+)and Eu^(3+)from TbxEu1-x@MA-PDC(x=0.75,0.85,0.90) shows the obvious temperature dependence,which benefits ratiometric temperature detection.Taking Tb0.85Eu0.15@MA-PDC as an example,when temperature varies from 303 to 443 K,the intensity ratio exhibits distinct S-type response based on Mott-Seitz model.It also behaves good relative sensitivity(1.03%/K at 383 K),low temperature resolution(0.059 K) and large reproducibility(>96%).This work demonstrates that functionalization of a simple-component HOF with mixed Ln^(3+)ions is a fantastic strategy to develop novel ratiometric thermometers of both low cost and good performance.
基金This work was supported by the National Natural Science Founda-tion of China(Grant No.L1924041)the Research Project on the Discipline Development Strategy of Academic Divisions of the Chinese Academy of Sciences(Grant No.XK2019DXC006).
文摘Water is the fundamental natural resource that supports life,ecosystems and human society.Thus studying the water cycle is important for sustainable development.In the context of global climate change,a better under-standing of the water cycle is needed.This study summarises current research and highlights future directions of water science from four perspectives:(i)the water cycle;(ii)hydrologic processes;(iii)coupled natural-social water systems;and(iv)integrated watershed management.Emphasis should be placed on understanding the joint impacts of climate change and human activities on hydrological processes and water resources across temporal and spatial scales.Understanding the interactions between land and atmosphere are keys to addressing this is-sue.Furthermore systematic approaches should be developed for large basin studies.Areas for focused research include:variations of cryosphere hydrological processes in upper alpine zones;and human activities on the wa-ter cycle and relevant biogeochemical processes in middle-lower reaches.Because the water cycle is naturally coupled with social characteristics across multiple scales,multi-process and multi-scale models are needed.Hy-drological studies should use this new paradigm as part of water-food-energy frontier research.This will help to promote interdisciplinary study across natural and social sciences in accordance with the United Nation’s sustainable development goals.
基金financial support received from the National Natural Science Foundation of China(81373356,81573378 and 81703436)the Science and Technology Innovation Action Plan for Basic Research of Shanghai 2014 (14JC1493200)CASIMM0120153020,Shanghai Sailing Program 2017(17YF1423500)
文摘Self-nanoemulsifying systems(SNEs) have excellent ability to improve the solubility ofpoorly water-soluble drugs(PWSD). However, SNEs are likely to be degraded in gastroin-testinal(GIT) when their surface is recognized by lipase/co-lipase enzyme complex, result-ing in rapid release and precipitation of encapsulated drugs. The precipitates are then cap-tured and removed by intestinal mucus, reducing the delivery efficacy of SNEs. Herein, theamphiphilic polymer Pluronic? F127 was incorporated into long and short-chain triglyc-erides(LCT, SCT) based SNEs to diminish the recognition and therefore minimized theirdegradation by enzymes and clearance by mucus. The SNEs were characterized in termsof particle size, zeta potential and stability. Ex vivo multiple particles tracking studies wereperformed by adding particle solution into fresh rat mucus. Cellular uptake of SNEs wereconducted by using E12 cells, the absorption and distribution in small intestine were alsostudied after oral administration in male Sprague-Dawley(SD) rats. The in vitro digestionrate of SNEs were found to be in following order SCT-SNE > SCT-F127-SNE > LCT-SNE > LCT-F127-SNE. Moreover, the LCT-F127-SNE was found to be most effective in enhancing cellularuptake, resulting in 3.5-fold, 2.1-fold and 1.7-fold higher than that of SCT-SNE, LCT-SNE andSCT-F127-SNE, respectively. After incubating the SNE with E12 cells, the LCT-F127-SNE ex-hibited the highest amount regarding both mucus penetration and cellular uptake, with anuptake amount number(via bicinchoninic acid(BCA) analysis) of 3.5-fold, 2.1-fold and 1.7-fold higher than that of SCT-SNE, LCT-SNE and SCT-F127-SNE, respectively. The in vivo results revealed that orally administered LCT-F127-SNE could significantly increase the bioavailability of Cyclosporine A(CsA), which was approximately 2.43-fold, 1.33-fold and 1.80-fold higher than that of SCT-SNE, SCT-F127-SNE and LCT-SNE, respectively. We address in this work that F127-modified SNEs have potentials to improve oral drug absorption by significantly reducing gastrointestinal enzymatic degradation and simultaneously enhancing mucus penetration.
基金financially supported by the National Key Research and Development Program of China(No.2017YFD 0300105)the National Natural Science Foundation of China(Nos.41571232,41671241,and 41877325)+1 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(CASmember No.2018349)。
文摘Rice planting(RP)is significant to methane(CH4_(4))emissions from paddy fields,but its effect on the relative contribution of the acetoclastic methanogenesis to total CH4_(4) production(F_(ac))and the fraction of CH4_(4) oxidized(Fox)is poorly understood.To quantify the responses of the F_(ac) and Fox to RP,we investigated CH4_(4) fluxes,CH4_(4) production and oxidation potentials,dissolved CH4_(4) concentrations,and their stable carbon isotopes in a flooded paddy soil.The mcrA and pmoA gene copies were also determined by quantitative polymerase chain reaction(qPCR).Compared with the unplanted soil(control,CK),the seasonal CH4_(4) emissions from the planted soil were significantly enhanced,13.6 times,resulting in large decreases in the CH4_(4) concentrations in the soil solution.This indicated that much more CH4_(4) was released into the atmosphere by the RP than was stored in the soils.Acetoclastic methanogenesis became more important from the tillering stage(TS)to the ripening stage(RS)for the CK,with F_(ac) values increased from 17%-20% to 46%-55%.With RP,the F_(ac) values were enhanced by 10%-20%,and it significantly increased the copy numbers of the mcrA gene at the four rice stages(TS,booting stage(BS),grain-filling stage(GS),and RS).Furthermore,the effect of the RP on the abundance of the mcrA gene was highly concurrent with the effect on the F_(ac) values.At the TS,the Fox values at the soil-water interface were around 50%-75% for the CK,being 15%-20% lower than those of the RP in the rhizosphere.It increased to 65%-100% at the GS,but was reduced by 20%-30% after the RP.These differences might be because the copy numbers of the pmoA gene were significantly raised at the TS while lowered at the GS by the RP.This was further demonstrated by the strong correlations between the effect of the RP on the abundance of the pmoA gene and the effect on the Fox values.These findings suggest that RP markedly impacts on the abundances of the mcrA and pmoA genes,affecting the pathway of CH4_(4) production and the fraction of CH4_(4) oxidization,respectively.
基金supported by the National Natural Science Foundation of China(21965005)the Natural Science Foundation of Guangxi Province(2018GXNSFAA294077,2021GXNSFAA076001)+1 种基金the Project of High-Level Talents of Guangxi(F-KA18015)the Guangxi Technology Base and Talent Subject(GUIKEAD18126001,GUIKE AD20297039)。
文摘Surface vacancy defects,as the bridge between theoretical structural study and the design of heterogenous catalysts,have captured much attention.This work develops a metal-organic framework-engaged replacement-pyrolysis approach to obtain highly dispersed Ru nanoparticles immobilized on the vacancy-rich Ni-NiO@C hollow microsphere(Ru/Ni-NiO@C).Fine annealing at 400°C introduces nickel and oxygen vacancies on Ru/Ni-NiO@C surface,resulting in an improved electrical conductivity and rapid mass-charge transfer efficiency.Ru/Ni-NiO@C with a hollow micro/nanostructure and interconnected meso-porosity favors the maximal exposure of abundant active sites and elevation of hydrogen oxidation reaction(HOR)activity.Experimental results and density functional theory(DFT)calculations reveal that an electronic effect between Ru and Ni-NiO@C,in conjunction with nickel/oxygen vacancies in the NiO species could synergistically optimize hydrogen binding energy(HBE)and hydroxide binding energy(OHBE).The HBE and OHBE optimizations thus created confer Ru/Ni-NiO@C with a mass activity over 7.75 times higher than commercial Pt/C.Our work may provide a constructive route to make a breakthrough in elevating the hydrogen electrocatalytic performance.
基金supported by the National Natural Science Foundation of China(21965005)the Natural Science Foundation of Guangxi Province(2021GXNSFAA076001)+1 种基金the Project of HighLevel Talents of Guangxi(F-KA18015)Guangxi Technology Base and Talent Subject(GUIKE AD18126001,GUIKE AD20297039)。
文摘The construction of oxide/metal composite catalysts is a competent means of exploiting the electronic interactions between oxide/metal to enhance catalytic activity.In this work,we construct a novel heterogeneous composite(Ru/HfO_(2)-NC)with Ru/HfO2nanoparticles nested in nitrogen-doped porous carbon via a zeolitic imidazole frameworks-assisted(ZIF)co-precipitation and calcination approach.In particular,ZIF guides an in-situ construction of nested configuration and confines the scattered nanoparticles.Strikingly,Ru/HfO_(2)-NC exhibits unusual ORR activity,superb durability,and methanol tolerance in0.1 M KOH solution with high half-wave potential(E1/2)of 0.83 V and follows a near-4e-reaction pathway.Additionally,the ZAB assembled with cathodic Ru/HfO_(2)-NC outputs a power density of 157.3 m W cm^(-2),a specific capacity of 775 mA h g-1Zn,and a prolonged lifespan of 258 h at 5 mA cm^(-2).Meanwhile,the catalyst has demonstrated potential applicability in flexible ZAB.As suggested by experimental results and density functional theory(DFT)analysis,the remarkable property possibly originated from the optimization of the adsorption and desorption of reactive intermediates caused by the reconfiguration of the electronic structure between Ru and HfO_(2).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1706218,61971388,and L1824025).
文摘The techniques for oceanographic observation have made great progress in both space-time coverage and quality, which make the observation data present some characteristics of big data. We explore the essence of global ocean dynamic via constructing a complex network with regard to sea surface temperature. The global ocean is divided into discrete regions to represent the nodes of the network. To understand the ocean dynamic behavior, we introduce the Gaussian mixture models to describe the nodes as limit-cycle oscillators. The interacting dynamical oscillators form the complex network that simulates the ocean as a stochastic system. Gaussian probability matching is suggested to measure the behavior similarity of regions. Complex network statistical characteristics of the network are analyzed in terms of degree distribution, clustering coefficient and betweenness. Experimental results show a pronounced sensitivity of network characteristics to the climatic anomaly in the oceanic circulation. Particularly, the betweenness reveals the main pathways to transfer thermal energy of El Niño–Southern oscillation. Our works provide new insights into the physical processes of ocean dynamic, as well as climate changes and ocean anomalies.
基金supported by the Graduate Innovation Program of China University of Mining and Technology (Grant No.2023WLJCRCZL273)the Fundamental Research Funds for the Central Universities (Grant No.2023ZDYQ11003)+4 种基金the China Postdoctoral Science Foundation (Grant No.2023M743784)the State Key Laboratory of Millimeter Waves (Grant No.K202407)the Basic Research Program of Xuzhou (Grant No.KC22016)the Key Academic Discipline Project of China University of Mining and Technology (Grant No.2022WLXK06)the National Natural Science Foundation of China (Grant No.12274315).
文摘The pseudo-magnetic field,an artificial synthetic gauge field,has attracted intense research interest in the classical wave system.The strong pseudo-magnetic field is realized in a two-dimensional photonic crystal(PhC)by introducing the uniaxial linear gradient deformation.The emergence of the pseudomagnetic field leads to the quantization of Landau levels.The quantum-Hall-like edge states between adjacent Landau levels are observed in our designed experimental implementation.The combination of two reversed gradient PhCs gives rise to the spatially nonuniform pseudo-magnetic field.The propagation of the large-area edge state and the interesting phenomenon of the snake state induced by the nonuniform pseudo-magnetic field is experimentally demonstrated in a PhC heterostructure.This provides a good platform to manipulate the transport of electromagnetic waves and to design useful devices for information processing.
基金financially supported by the National Natural Science Foundation of China (52363028)the Natural Science Foundation of Guangxi Province (2021GXNSFAA076001)the Guangxi Technology Base and Talent Subject (GUIKE AD23023004,GUIKE AD20297039)
文摘Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance.
基金the financial support by the Fundamental Research Funds for the Central Universities(No.2412019FZ008)the National Natural Science Foundation of China(Nos.22131004 and U21A20330)the"111 Project(No.B18012)。
文摘Benzimidazoles are very important chemical materials in the pharmaceutical industry,and the most common synthetic route is cyclization of o-phenylenediamine with carbon sources,in which utilization of inexpensive and abundant CO_(2)as C1 source is very impressive.Porous aromatic frameworks(PAFs)with highly desired skeletons have attracted great attentions in gas capture and catalysis.Herein,B-based PAF-165 and PAF-166 are designed and synthesized via Friedel-Crafts alkylation reaction,which present high surface areas as well as high stability.Benefiting from the abundant electron-deficient B centers,both PAFs exhibit excellent selective CO_(2)adsorption abilities.The presence of sterically hindered B units in PAFs can act as Lewis acid active sites for the frustrated Lewis pairs(FLPs)in situ formation with ophenylenediamine,thus promoting the synthesis of benzimidazole.The optimal reaction conditions for o-phenylenediamine cyclization with PAF catalysts are explored,and the reaction mechanism is also proposed.This work provides feasible ideas for incorporating FLPs within porous materials as reusable heterogeneous catalysts for CO_(2)capture and conversion.
基金supported by the National Natural Science Foundation of China (No.21965005)Natural Science Foundation of Guangxi Province (No.2021GXNSFAA076001)+1 种基金Guangxi Technology Base and Talent Subject (Nos.GUIKE AD18126001, GUIKE AD20297039)Innovation Project of Guangxi Graduate Education (Nos.YCSW2023140, YCBZ2023062)。
文摘Application of transition metal boride(TMB) catalysts towards hydrolysis of NaBH_(4) holds great significance to help relieve the energy crisis. Herein, we present a facile and versatile metal-organic framework(MOF) assisted strategy to prepare Co_(2)B-CoPO_x with massive boron vacancies by introducing phytic acid(PA) cross-linked Co complexes that are acquired from reaction of PA and ZIF-67 into cobalt boride. The PA etching effectively breaks down the structure of ZIF-67 to create more vacancies, favoring the maximal exposure of active sites and elevation of catalytic activity. Experimental results demonstrate a drastic electronic interaction between Co and the dopant phosphorous(P), thereby the robustly electronegative P induces electron redistribution around the metal species, which facilitates the dissociation of B-H bond and the adsorption of H_(2)O molecules. The vacancy-rich Co_(2)B-CoPO_x catalyst exhibits scalable performance, characterized by a high hydrogen generation rate(HGR) of 7716.7 m L min^(-1)g^(-1) and a low activation energy(Ea) of 44.9 k J/mol, rivaling state-of-the-art catalysts. This work provides valuable insights for the development of advanced catalysts through P doping and boron vacancy engineering and the design of efficient and sustainable energy conversion systems.
基金Supported by Qihuang Engineering High-Level Talent Team Cultivation Project of Guangxi University of Chinese Medicine(2018002)Guangxi Science and Technology Major Project(GK AA17292008)。
文摘Graphene is the thinest nanomaterial known in the world,which has unique electronic mobility,super specific surface area,high mechanical strength,excellent corrosion resistance and surface chemical structure.Due to its special nanostructure and excellent physical and chemical properties,graphene has a broad application prospect in the fields of electronics,optics,magnetism,biomedicine,catalysis,energy storage and sensors.In order to better develop and utilize graphene data,this paper reviewed the structural characteristics of graphene,as well as its research progress in biosensors,bio-imaging,aerogel and other biomedical fields,hoping to provide scientific basis for better development of graphene and the development of graphene pharmaceutical products.
基金supported by the National Natural Science Foundation of China(Grant Nos.62175180,62005193,11874245,and 12004425)the National Key Research and Development Program of China(Grant No.2017YFA0701004)the Natural Science Foundation of Jiangsu Province(Grant No.BK20200630).
文摘Valley topological photonic crystals(TPCs),which are robust against local disorders and structural defects,have attracted great research interest,from theoretical verification to technical applications.However,previous works mostly focused on the robustness of topologically protected edge states and little attention was paid to the importance of the photonic bandgaps(PBGs),which hinders the implementation of various multifrequency functional topological photonic devices.Here,by systematically studying the relationship between the degree of symmetry breaking and the working bandwidth of the edge states,we present spoof surface plasmon polariton valley TPCs with broadband edge states and engineered PBGs,where the operation frequency is easy to adjust.Furthermore,by connecting valley TPCs operating at different frequencies,a broadband multifunctional frequency-dependent topological photonic device with selectively directional light transmission is fabricated and experimentally demonstrated,achieving the functions of wavelength division multiplexing and add–drop multiplexing.We provide an effective and insightful method for building multi-frequency topological photonic devices.