With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-he...With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-healable,self-adhesive,and room-temperature oxygen sensor with excellent repeatability,a full concentration detection range(0-100%),low theoretical limit of detection(5.7 ppm),high sensitivity(0.2%/ppm),good linearity,excellent temperature,and humidity tolerances is fabricated by using polyacrylamide-chitosan(PAM-CS)double network(DN)organohydrogel as a novel transducing material.The PAM-CS DN organohydrogel is transformed from the PAM-CS composite hydrogel using a facile soaking and solvent replacement strategy.Compared with the pristine hydrogel,the DN organohydrogel displays greatly enhanced mechanical strength,moisture retention,freezing resistance,and sensitivity to oxygen.Notably,applying the tensile strain improves both the sensitivity and response speed of the organohydrogel-based oxygen sensor.Furthermore,the response to the same concentration of oxygen before and after self-healing is basically the same.Importantly,we propose an electrochemical reaction mechanism to explain the positive current shift of the oxygen sensor and corroborate this sensing mechanism through rationally designed experiments.The organohydrogel oxygen sensor is used to monitor human respiration in real-time,verifying the feasibility of its practical application.This work provides ideas for fabricating more stretchable,self-healable,self-adhesive,and high-performance gas sensors using ion-conducting organohydrogels.展开更多
Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deform...Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deformability,sensitivity,and transparency,and thus the development of high-performance,stretchable,and low-cost humidity sensors is urgently needed as wearable electronics.Here,ultrasensitive,highly deformable,and transparent humidity sensors are fabricated based on cost-effective polyacrylamide-based double network hydrogels.Concomitantly,a general method for preparing hydrogel films with controllable thickness is proposed to boost the sensitivity of hydrogel-based sensors due to the extensively increased specific surface area,which can be applied to different polymer networks and facilitate the development of flexible integrated electronics.In addition,sustainable tapioca rich in hydrophilic polar groups is introduced for the first time as a second cross-linked network,exhibiting excellent water adsorption capacity.Through the synergistic optimization of structure and composition,the obtained hydrogel film exhibits an ultrahigh sensitivity of 13,462.1%/%RH,which is unprecedented.Moreover,the hydrogel film-based sensor exhibits excellent repeatability and the ability to work normally under stretching with even enhanced sensitivity.As a proof of concept,we integrate the stretchable sensor with a specially designed wireless circuit and mask to fabricate a wireless respiratory interruption detection system with Bluetooth transmission,enabling real-time monitoring of human health status.This work provides a general strategy to construct high-performance,stretchable,and miniaturized hydrogel-based sensors as next-generation wearable devices for real-time monitoring of various physiological signals.展开更多
Although solid-state lithium electrolytes have the potential to reduce the safety issues associated with organic liquid electrolytes,disadvantages such as low total conductivity,large interface impedance,and delaminat...Although solid-state lithium electrolytes have the potential to reduce the safety issues associated with organic liquid electrolytes,disadvantages such as low total conductivity,large interface impedance,and delamination of the interface due to cyclic stress still need to be addressed.The solid-state lithium-ion conductor Li_(0.33)La_(0.56)TiO_(3)(LLTO) was prepared via a hydrothermal route by using CTAB as templates in this paper.Perovskite LLTO with micro-porous channels was obtained and the total conductivity is comparable to the non-porous LLTO.Porous LLTO pellets are infiltrated with the non-porous LLTO precursor solution,and the total conductivities of the infiltrated porous LLTO are all higher than those without infiltration.After infiltration,the porous LLTO calcined at 600℃ achieves the highest total conductivity,7.88×10^(-5) S/cm.The fracture toughness of the infiltrated LLTO is higher than that of the non-porous LLTO.The results demonstrate a new way to prepare solid-state lithium-ion conductors with high ionic conductivity and great tolerance to cyclic stress.展开更多
基金support from the National Natural Science Foundation of China(61801525)the Guangdong Basic and Applied Basic Research Foundation(2020A1515010693)+1 种基金the Guangdong Natural Science Funds Grant(2018A030313400),the Science and Technology Program of Guangzhou(201904010456)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(2021qntd09).
文摘With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-healable,self-adhesive,and room-temperature oxygen sensor with excellent repeatability,a full concentration detection range(0-100%),low theoretical limit of detection(5.7 ppm),high sensitivity(0.2%/ppm),good linearity,excellent temperature,and humidity tolerances is fabricated by using polyacrylamide-chitosan(PAM-CS)double network(DN)organohydrogel as a novel transducing material.The PAM-CS DN organohydrogel is transformed from the PAM-CS composite hydrogel using a facile soaking and solvent replacement strategy.Compared with the pristine hydrogel,the DN organohydrogel displays greatly enhanced mechanical strength,moisture retention,freezing resistance,and sensitivity to oxygen.Notably,applying the tensile strain improves both the sensitivity and response speed of the organohydrogel-based oxygen sensor.Furthermore,the response to the same concentration of oxygen before and after self-healing is basically the same.Importantly,we propose an electrochemical reaction mechanism to explain the positive current shift of the oxygen sensor and corroborate this sensing mechanism through rationally designed experiments.The organohydrogel oxygen sensor is used to monitor human respiration in real-time,verifying the feasibility of its practical application.This work provides ideas for fabricating more stretchable,self-healable,self-adhesive,and high-performance gas sensors using ion-conducting organohydrogels.
基金J.W.acknowledges financial supports from the National Natural Science Foundation of China(61801525)the Guangdong Basic and Applied Basic Research Foundation(2020A1515010693)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(22lgqb17).
文摘Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deformability,sensitivity,and transparency,and thus the development of high-performance,stretchable,and low-cost humidity sensors is urgently needed as wearable electronics.Here,ultrasensitive,highly deformable,and transparent humidity sensors are fabricated based on cost-effective polyacrylamide-based double network hydrogels.Concomitantly,a general method for preparing hydrogel films with controllable thickness is proposed to boost the sensitivity of hydrogel-based sensors due to the extensively increased specific surface area,which can be applied to different polymer networks and facilitate the development of flexible integrated electronics.In addition,sustainable tapioca rich in hydrophilic polar groups is introduced for the first time as a second cross-linked network,exhibiting excellent water adsorption capacity.Through the synergistic optimization of structure and composition,the obtained hydrogel film exhibits an ultrahigh sensitivity of 13,462.1%/%RH,which is unprecedented.Moreover,the hydrogel film-based sensor exhibits excellent repeatability and the ability to work normally under stretching with even enhanced sensitivity.As a proof of concept,we integrate the stretchable sensor with a specially designed wireless circuit and mask to fabricate a wireless respiratory interruption detection system with Bluetooth transmission,enabling real-time monitoring of human health status.This work provides a general strategy to construct high-performance,stretchable,and miniaturized hydrogel-based sensors as next-generation wearable devices for real-time monitoring of various physiological signals.
基金Project supported by the Natural Science Foundation of Hebei Province,China(E2021502013)Key Research and Development Projects of Hebei Province.China(21373805D)。
文摘Although solid-state lithium electrolytes have the potential to reduce the safety issues associated with organic liquid electrolytes,disadvantages such as low total conductivity,large interface impedance,and delamination of the interface due to cyclic stress still need to be addressed.The solid-state lithium-ion conductor Li_(0.33)La_(0.56)TiO_(3)(LLTO) was prepared via a hydrothermal route by using CTAB as templates in this paper.Perovskite LLTO with micro-porous channels was obtained and the total conductivity is comparable to the non-porous LLTO.Porous LLTO pellets are infiltrated with the non-porous LLTO precursor solution,and the total conductivities of the infiltrated porous LLTO are all higher than those without infiltration.After infiltration,the porous LLTO calcined at 600℃ achieves the highest total conductivity,7.88×10^(-5) S/cm.The fracture toughness of the infiltrated LLTO is higher than that of the non-porous LLTO.The results demonstrate a new way to prepare solid-state lithium-ion conductors with high ionic conductivity and great tolerance to cyclic stress.