N-doped graphite carbon sphere coated cobalt nanoparticle catalyst(Co@C-N-900),prepared by solvothermal-calcination method,is applied to activate peroxymonosulfate(PMS)for bisphenol A(BPA)elimination.The outcomes demo...N-doped graphite carbon sphere coated cobalt nanoparticle catalyst(Co@C-N-900),prepared by solvothermal-calcination method,is applied to activate peroxymonosulfate(PMS)for bisphenol A(BPA)elimination.The outcomes demonstrate that the Co@C-N-900 could effectively activate PMS,thereby causing efficient removal of BPA in water.In addition,the Co@C-N-900/PMS system also has the advantages of low metal leaching,applicability in high salinity environments,good selectivity and stability.Further investigations using electron paramagnetic resonance,chronoamperometry,and quenching experiments demonstrated that the Co@C-N-900/PMS system is a typical non-radical route with singlet oxygen(^(1)O_(2))as the main reactive oxygen species(ROS).Density functional theory calculations(DFT)indicate that N-doping can effectively regulate the charge distribution on the catalyst surface,generating acidic/alkaline sites favorable for PMS adsorption and activation.Furthermore,it also can enhance the interaction and charge transfer capacity between the Co@C-N-900 and PMS.Lastly,LC-QTOF-MS/MS analysis revealed two possible BPA degradation pathways:(1)^(1)O_(2)attacked the isopropyl group in BPA between the two phenyl groups,causingβ-scission to occur.(2)Following the oxidation of the hydroxyl group in the aromatic ring of BPA,^(1)O_(2)could cause furtherβ-scission.The prepared Co@C-N-900 catalyst is a very promising catalyst,which would offer a workable remedy for treating water pollution.展开更多
基金the financial support from Sichuan Science and Technology Program(No.2023NSFSC0847)Scientific Research and Innovation Team Program of Sichuan University of Science and Technology(No.SUSE652A003)+3 种基金Talent Introduction Project of Sichuan University of Science and Engineering(No.2021RC03)Talent Introduction Project of Sichuan University of Science and Engineering(No.2021RC05)the Undergraduate Training Program for Innovation and Entrepreneurship(No.CX2024042)The Innovation Fund of Postgraduate,Sichuan University of Science&Engineering(No.Y2024094)。
文摘N-doped graphite carbon sphere coated cobalt nanoparticle catalyst(Co@C-N-900),prepared by solvothermal-calcination method,is applied to activate peroxymonosulfate(PMS)for bisphenol A(BPA)elimination.The outcomes demonstrate that the Co@C-N-900 could effectively activate PMS,thereby causing efficient removal of BPA in water.In addition,the Co@C-N-900/PMS system also has the advantages of low metal leaching,applicability in high salinity environments,good selectivity and stability.Further investigations using electron paramagnetic resonance,chronoamperometry,and quenching experiments demonstrated that the Co@C-N-900/PMS system is a typical non-radical route with singlet oxygen(^(1)O_(2))as the main reactive oxygen species(ROS).Density functional theory calculations(DFT)indicate that N-doping can effectively regulate the charge distribution on the catalyst surface,generating acidic/alkaline sites favorable for PMS adsorption and activation.Furthermore,it also can enhance the interaction and charge transfer capacity between the Co@C-N-900 and PMS.Lastly,LC-QTOF-MS/MS analysis revealed two possible BPA degradation pathways:(1)^(1)O_(2)attacked the isopropyl group in BPA between the two phenyl groups,causingβ-scission to occur.(2)Following the oxidation of the hydroxyl group in the aromatic ring of BPA,^(1)O_(2)could cause furtherβ-scission.The prepared Co@C-N-900 catalyst is a very promising catalyst,which would offer a workable remedy for treating water pollution.