Bananas are highly perishable after harvest,and processing them into dried products is a crucial approach to reducing losses and adding their economic values.To address the inefficiency and prolonged duration of tradi...Bananas are highly perishable after harvest,and processing them into dried products is a crucial approach to reducing losses and adding their economic values.To address the inefficiency and prolonged duration of traditional hot air drying(HAD)and the quality inconsistency associated with single infrared drying(IRD),this study proposed a novel hot air-infrared combined drying(HAD-IRD)strategy.The effects of HAD,IRD,and HAD-IRD on the drying kinetics,color,rehydration capacity,moisture diffusion mechanism,and sensory quality of banana slices were systematically investigated.The parameters of the combined drying process were optimized using an L_(9)(3^(3))orthogonal experimental design.Results indicated that both IRD and HAD-IRD significantly reduced drying time compared to single HAD.While single IRD achieved a rapid drying rate,the lack of effective convective airflow led to potential case-hardening and unstable product quality.In contrast,the HAD-IRD strategy demonstrated a synergistic effect.The optimal parameters were determined as follows:hot air temperature of 70℃,infrared temperature of 60℃,and radiation distance of 16 cm.Under these optimized conditions,HAD-IRD reduced the total drying time by over 70%while simultaneously yielding products with superior color,higher sensory scores,and improved rehydration ratio.This study confirms that HAD-IRD is an efficient and high-quality drying method for banana slices,providing a reliable theoretical foundation and technical solution for the drying of thermosensitive fruits.展开更多
基金funded by the National Natural Science Foundation of China,grant number 52306124(received by Dan Huang),URL:https://mp.weixin.qq.com/s/HHNYjgYKAynqYR7ySxYwzQ(accessed on 01 January 2025)the Changsha Municipal Natural Science Foundation,grant number kq2402259(received by Shuai Huang),URL:http://kjj.changsha.gov.cn/zfxxgk/tzgg_27202/202501/t20250122_11726939.html(accessed on 01 January 2025)the Regional Joint Funds of the Natural Science Foundation of Hunan Province,grant num-ber 2025JJ70463(received by Shuai Huang),URL:https://kjt.hunan.gov.cn/kjt/xxgk/tzgg/tzgg_1/202502/t20250212_33585991.html(accessed on 01 January 2025).
文摘Bananas are highly perishable after harvest,and processing them into dried products is a crucial approach to reducing losses and adding their economic values.To address the inefficiency and prolonged duration of traditional hot air drying(HAD)and the quality inconsistency associated with single infrared drying(IRD),this study proposed a novel hot air-infrared combined drying(HAD-IRD)strategy.The effects of HAD,IRD,and HAD-IRD on the drying kinetics,color,rehydration capacity,moisture diffusion mechanism,and sensory quality of banana slices were systematically investigated.The parameters of the combined drying process were optimized using an L_(9)(3^(3))orthogonal experimental design.Results indicated that both IRD and HAD-IRD significantly reduced drying time compared to single HAD.While single IRD achieved a rapid drying rate,the lack of effective convective airflow led to potential case-hardening and unstable product quality.In contrast,the HAD-IRD strategy demonstrated a synergistic effect.The optimal parameters were determined as follows:hot air temperature of 70℃,infrared temperature of 60℃,and radiation distance of 16 cm.Under these optimized conditions,HAD-IRD reduced the total drying time by over 70%while simultaneously yielding products with superior color,higher sensory scores,and improved rehydration ratio.This study confirms that HAD-IRD is an efficient and high-quality drying method for banana slices,providing a reliable theoretical foundation and technical solution for the drying of thermosensitive fruits.