The objective of this study is to investigate the effect of the ultrasound-microbubble technique in nuclear factor kappa B(NF-κB) decoy oligodeoxynucleotide(ODN) transfection in the gingival tissue in mice. The 6-FAM...The objective of this study is to investigate the effect of the ultrasound-microbubble technique in nuclear factor kappa B(NF-κB) decoy oligodeoxynucleotide(ODN) transfection in the gingival tissue in mice. The 6-FAM-labeled scrambled decoy ODN with microbubbles was applied to the periodontal tissue in 8-week-old male C57BL/6J mice by ultrasound radiation at low(LUM-Sc) and high(HUM-Sc) intensities to optimize the transfection condition of the ultrasound-microbubble method.Histological inspections were performed two hours after transfection to compare the expression with that in the sham-operated group without ultrasound radiation(A-Sc). Then, an NF-κB decoy was transfected into the periodontal tissue using the highintensity ultrasound-microbubble(HUM-NF) technique to examine the anti-inflammatory effects of the decoy ODN. Western blot analysis was performed to investigate the expression of interleukin(IL)-1β, IL-6 and intercellular adhesion molecule-1(ICAM-1)in the gingival tissues in the HUM-Sc, the HUM-NF and control groups. The fluorescence microscopy results showed that the fluorescent intensity in the periodontal tissues in the LUM-Sc and HUM-Sc groups was significantly higher than that in the A-Sc and the control groups. The fluorescent intensity in the HUM-Sc group, especially in the gingival connective tissue,was the highest of all groups. Western blot analysis indicated that the protein expression levels of IL-1β, IL-6 and ICAM-1 in the HUM-NF group were significantly lower than those in the HUM-Sc and the control groups. These findings suggest that the high-intensity ultrasound-microbubble technique is an effective tool for decoy transfection into the periodontal tissue.展开更多
The ability to maintain functional hepatocytes has important implications for bioartificial liver development,cell-based therapies,drug screening,and tissue engineering.Several approaches can be used to restore hepato...The ability to maintain functional hepatocytes has important implications for bioartificial liver development,cell-based therapies,drug screening,and tissue engineering.Several approaches can be used to restore hepatocyte function in vitro,including coating a culture substrate with extracellular matrix(ECM),encapsulating cells within biomimetic gels(Collagen-or Matrigel-based),or co-cultivation with other cells.This paper describes the use of bioactive heparin-based core-shell microcapsules to form and cultivate hepatocyte spheroids.These microcapsules are comprised of an aqueous core that facilitates hepatocyte aggregation into spheroids and a heparin hydrogel shell that binds and releases growth factors.We demonstrate that bioactive microcapsules retain and release endogenous signals thus enhancing the function of encapsulated hepatocytes.We also demonstrate that hepatic function may be further enhanced by loading exogenous hepatocyte growth factor(HGF)into microcapsules and inhibiting transforming growth factor(TGF)-β1 signaling.Overall,bioactive microcapsules described here represent a promising new strategy for the encapsulation and maintenance of primary hepatocytes and will be beneficial for liver tissue engineering,regenerative medicine,and drug testing applications.展开更多
文摘The objective of this study is to investigate the effect of the ultrasound-microbubble technique in nuclear factor kappa B(NF-κB) decoy oligodeoxynucleotide(ODN) transfection in the gingival tissue in mice. The 6-FAM-labeled scrambled decoy ODN with microbubbles was applied to the periodontal tissue in 8-week-old male C57BL/6J mice by ultrasound radiation at low(LUM-Sc) and high(HUM-Sc) intensities to optimize the transfection condition of the ultrasound-microbubble method.Histological inspections were performed two hours after transfection to compare the expression with that in the sham-operated group without ultrasound radiation(A-Sc). Then, an NF-κB decoy was transfected into the periodontal tissue using the highintensity ultrasound-microbubble(HUM-NF) technique to examine the anti-inflammatory effects of the decoy ODN. Western blot analysis was performed to investigate the expression of interleukin(IL)-1β, IL-6 and intercellular adhesion molecule-1(ICAM-1)in the gingival tissues in the HUM-Sc, the HUM-NF and control groups. The fluorescence microscopy results showed that the fluorescent intensity in the periodontal tissues in the LUM-Sc and HUM-Sc groups was significantly higher than that in the A-Sc and the control groups. The fluorescent intensity in the HUM-Sc group, especially in the gingival connective tissue,was the highest of all groups. Western blot analysis indicated that the protein expression levels of IL-1β, IL-6 and ICAM-1 in the HUM-NF group were significantly lower than those in the HUM-Sc and the control groups. These findings suggest that the high-intensity ultrasound-microbubble technique is an effective tool for decoy transfection into the periodontal tissue.
基金supported in part by the Center for Regenerative Medicine and Cells to Cures Strategic Initiative at Mayo Clinic,J.W.Kieckhefer Foundation,Al Nahyan Foundation,and NIH(DK107255 and P30DK084567).
文摘The ability to maintain functional hepatocytes has important implications for bioartificial liver development,cell-based therapies,drug screening,and tissue engineering.Several approaches can be used to restore hepatocyte function in vitro,including coating a culture substrate with extracellular matrix(ECM),encapsulating cells within biomimetic gels(Collagen-or Matrigel-based),or co-cultivation with other cells.This paper describes the use of bioactive heparin-based core-shell microcapsules to form and cultivate hepatocyte spheroids.These microcapsules are comprised of an aqueous core that facilitates hepatocyte aggregation into spheroids and a heparin hydrogel shell that binds and releases growth factors.We demonstrate that bioactive microcapsules retain and release endogenous signals thus enhancing the function of encapsulated hepatocytes.We also demonstrate that hepatic function may be further enhanced by loading exogenous hepatocyte growth factor(HGF)into microcapsules and inhibiting transforming growth factor(TGF)-β1 signaling.Overall,bioactive microcapsules described here represent a promising new strategy for the encapsulation and maintenance of primary hepatocytes and will be beneficial for liver tissue engineering,regenerative medicine,and drug testing applications.