In recent decades,large ensemble simulation(LENS)or super-large ensemble simulation(SLENS)experiments with climate models,including the simulation of both the historical and future climate,have been increasingly explo...In recent decades,large ensemble simulation(LENS)or super-large ensemble simulation(SLENS)experiments with climate models,including the simulation of both the historical and future climate,have been increasingly exploited in the fields of climate change,climate variability,climate projection,and beyond.This paper provides an overview of LENS in climate systems.It delves into its definition,initialization,significance,and scientific concerns.Additionally,its development history and relevant theories,methods,and primary fields of application are also reviewed.Conclusions obtained from single-model LENS can be more robust compared with those from ensemble simulations with smaller numbers of members.The interactions among model biases,forced responses,and internal variabilities,which serve as the added value in LENS,are highlighted.Finally,we put forward the future trajectory of LENS with climate or Earth system models(ESMs).Super-large ensemble simulation,high-resolution LENS,LENS employing ESMs,and combining LENS with artificial intelligence,will greatly promote the study of climate and related applications.展开更多
A super-large ensemble simulation dataset with 110 members has been produced by the fully coupled model FGOALS-g3 developed by researchers at the Institute of Atmospheric Physics,Chinese Academy of Sciences.This is th...A super-large ensemble simulation dataset with 110 members has been produced by the fully coupled model FGOALS-g3 developed by researchers at the Institute of Atmospheric Physics,Chinese Academy of Sciences.This is the first dataset of large ensemble simulations with a climate system model developed by a Chinese modeling center.The simulation has the largest realizations up to now worldwide in terms of single-model initial-condition large ensembles.Each member includes a historical experiment(1850-2014)and an experiment(2015-99)under the very high greenhouse gas emissions Shared Socioeconomic Pathway scenario(SSP5-8.5).The dataset includes monthly and daily temperature,precipitation,and other variables,requiring storage of 275 TB.Additionally,the surface air temperature(SAT)and land precipitation simulated by the FGOALS-g3 super-large ensemble have been validated and projected.The ensemble can capture the response of SAT and land precipitation to external forcings well,and the internal variabilities can be quantified.The availability of more than 100 realizations will help researchers to study rare events and improve the understanding of the impact of internal variability on forced climate changes.展开更多
基金This study was supported by the National Natural Science Foundation of China(Grant No.U2342228)the National Key Program for Developing Basic Sciences(Grant No.2020YFA0608902)+1 种基金the National Natural Science Foundation of China(Grant Nos.92358302,and 42242018)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0500303).
文摘In recent decades,large ensemble simulation(LENS)or super-large ensemble simulation(SLENS)experiments with climate models,including the simulation of both the historical and future climate,have been increasingly exploited in the fields of climate change,climate variability,climate projection,and beyond.This paper provides an overview of LENS in climate systems.It delves into its definition,initialization,significance,and scientific concerns.Additionally,its development history and relevant theories,methods,and primary fields of application are also reviewed.Conclusions obtained from single-model LENS can be more robust compared with those from ensemble simulations with smaller numbers of members.The interactions among model biases,forced responses,and internal variabilities,which serve as the added value in LENS,are highlighted.Finally,we put forward the future trajectory of LENS with climate or Earth system models(ESMs).Super-large ensemble simulation,high-resolution LENS,LENS employing ESMs,and combining LENS with artificial intelligence,will greatly promote the study of climate and related applications.
基金supported by the National Key Program for Developing Basic Sciences (Grant No. 2020YFA0608902)the National Natural Science Foundation of China (Grant Nos. 41976026 and 41931183)the technical support from the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (Earth Lab)
文摘A super-large ensemble simulation dataset with 110 members has been produced by the fully coupled model FGOALS-g3 developed by researchers at the Institute of Atmospheric Physics,Chinese Academy of Sciences.This is the first dataset of large ensemble simulations with a climate system model developed by a Chinese modeling center.The simulation has the largest realizations up to now worldwide in terms of single-model initial-condition large ensembles.Each member includes a historical experiment(1850-2014)and an experiment(2015-99)under the very high greenhouse gas emissions Shared Socioeconomic Pathway scenario(SSP5-8.5).The dataset includes monthly and daily temperature,precipitation,and other variables,requiring storage of 275 TB.Additionally,the surface air temperature(SAT)and land precipitation simulated by the FGOALS-g3 super-large ensemble have been validated and projected.The ensemble can capture the response of SAT and land precipitation to external forcings well,and the internal variabilities can be quantified.The availability of more than 100 realizations will help researchers to study rare events and improve the understanding of the impact of internal variability on forced climate changes.