Correction to:Rare Met.https://doi.org/10.1007/s12598-021-01864-4 In the original publication,the affiliation of the 5th author(Corresponding author)was published incorrectly.The correct affiliation is given in this C...Correction to:Rare Met.https://doi.org/10.1007/s12598-021-01864-4 In the original publication,the affiliation of the 5th author(Corresponding author)was published incorrectly.The correct affiliation is given in this Correction.The original publication has been corrected.展开更多
P2-type layered oxide cathode materials have attracted extensive attention due to their simple preparation,high specific capacity,adjustable voltage range,and high packing density.However,the harmful phase transitions...P2-type layered oxide cathode materials have attracted extensive attention due to their simple preparation,high specific capacity,adjustable voltage range,and high packing density.However,the harmful phase transitions that occur at high voltage severely limit their practical application.Herein,a novel high-valence tungsten doped P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)cathode material was prepared using the sol–gel method.Through diffusion kinetics analysis and in situ X-ray diffraction(in situ XRD),it has been proven that W^(6+)not only enhances the Na^(+)diffusion coefficient but also reduces the P2–O2 phase transition.The optimized NNMO-W1%delivers a high discharge specific capacity of 163 mAh·g^(-1)at 0.1C,and the capacity retention rate is as high as 77.6%after 1000 cycles at 10C.This is mainly due to that W^(6+)enters the lattice,optimizing the arrangement of primary particles.This work sheds light on the design and construction of high-performance layered oxides cathode materials.展开更多
Titanium dioxide is considered to be promising anode for sodium-ion batteries due to stable structure during the charge/discharge process.However,its practical application is hindered by the slow electron/ion transpor...Titanium dioxide is considered to be promising anode for sodium-ion batteries due to stable structure during the charge/discharge process.However,its practical application is hindered by the slow electron/ion transport.Herein,phosphorus-doped anatase TiO_(2) nanoparticles with oxygen vacancies are successfully synthesized and utilized as high-performance sodium-storage materials.The dual strategy of phosphorus-doping and oxygen vacancies can concurrently boost electronic conductivity and adjust ion diffusion kinetics.They significantly contribute to the improved rate performance(167 mAh·g^(-1) at 20.0C)and stable cycling(95.9%after 2000 cycles at 20.0C).The proposed dual strategy can be potentially used to improve other oxide anodes for rechargeable batteries.展开更多
Sodium-ion batteries(SIBs)have received much attention as a potential energy storage system to replace lithium-ion batteries(LIBs)due to the abundant sodium resources and low cost[1,2].Recently,conversion materials[3]...Sodium-ion batteries(SIBs)have received much attention as a potential energy storage system to replace lithium-ion batteries(LIBs)due to the abundant sodium resources and low cost[1,2].Recently,conversion materials[3],insertion-type materials[4],and alloying-type compounds[5]have been used as anode materials for SIBs.展开更多
The extremely low electrical conductivity and ion-diffusion coefficient of Li_(2)FeSiO_(4)limits its application as a cathode material in lithium-ion batteries.Therefore,in situ boron-doped Li_(2)FeSi_(1)-xB_(x)O_(4-...The extremely low electrical conductivity and ion-diffusion coefficient of Li_(2)FeSiO_(4)limits its application as a cathode material in lithium-ion batteries.Therefore,in situ boron-doped Li_(2)FeSi_(1)-xB_(x)O_(4-δ)/C(x=0,0.01,0.03,0.05 and 0.07)at the Si site was prepared via the solid-state reaction method using pitch as the c arbon source.B doping in the lattice structure and a c arbon coating on the surface of the composites could effectively enhance the Li^(+)/electron conductivity.Moreover,the reduced particle size of the active material with the relatively high specific area via borondoped modification could improve the wettability between the electrolyte and cathode.With the synergistic effect of appropriate boron doping and carbon coating,it exhibits a good rate performance,specific capacity,and cycling performance.As a result,the as-prepared Li_(2)FeSi_(0.95)B_(0.05)O_(4-δ)/C cathode showed a high discharge capacity of 160.7mAh·g^(-1)at 0.2C,and the capacity retention rate was 96%after 100 cycles at 1.0C.This work presents an effective path for designing advanced cathode materials for lithium-ion batteries.展开更多
文摘Correction to:Rare Met.https://doi.org/10.1007/s12598-021-01864-4 In the original publication,the affiliation of the 5th author(Corresponding author)was published incorrectly.The correct affiliation is given in this Correction.The original publication has been corrected.
基金supported by the National Natural Science Foundation of China Key Program(No.U22A20420)Changzhou Leading Innovative Talents Introduction and Cultivation Project(No.CQ20230109)the Key Project of Jiangsu Provincial Basic Research Program(No.BK20243032)。
文摘P2-type layered oxide cathode materials have attracted extensive attention due to their simple preparation,high specific capacity,adjustable voltage range,and high packing density.However,the harmful phase transitions that occur at high voltage severely limit their practical application.Herein,a novel high-valence tungsten doped P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)cathode material was prepared using the sol–gel method.Through diffusion kinetics analysis and in situ X-ray diffraction(in situ XRD),it has been proven that W^(6+)not only enhances the Na^(+)diffusion coefficient but also reduces the P2–O2 phase transition.The optimized NNMO-W1%delivers a high discharge specific capacity of 163 mAh·g^(-1)at 0.1C,and the capacity retention rate is as high as 77.6%after 1000 cycles at 10C.This is mainly due to that W^(6+)enters the lattice,optimizing the arrangement of primary particles.This work sheds light on the design and construction of high-performance layered oxides cathode materials.
基金the National Natural Science Foundation of China(Nos.91961126 and 22078029)Zhejiang Provincial Natural Science Foundation(No.LR21E020003)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX21_1180)Jiangsu Development&Reform Commission and Changzhou Development&Reform Commission for their support。
文摘Titanium dioxide is considered to be promising anode for sodium-ion batteries due to stable structure during the charge/discharge process.However,its practical application is hindered by the slow electron/ion transport.Herein,phosphorus-doped anatase TiO_(2) nanoparticles with oxygen vacancies are successfully synthesized and utilized as high-performance sodium-storage materials.The dual strategy of phosphorus-doping and oxygen vacancies can concurrently boost electronic conductivity and adjust ion diffusion kinetics.They significantly contribute to the improved rate performance(167 mAh·g^(-1) at 20.0C)and stable cycling(95.9%after 2000 cycles at 20.0C).The proposed dual strategy can be potentially used to improve other oxide anodes for rechargeable batteries.
基金the National Natural Science Foundation of China(Nos.91961126 and 22078029)。
文摘Sodium-ion batteries(SIBs)have received much attention as a potential energy storage system to replace lithium-ion batteries(LIBs)due to the abundant sodium resources and low cost[1,2].Recently,conversion materials[3],insertion-type materials[4],and alloying-type compounds[5]have been used as anode materials for SIBs.
基金financially supported by the National Natural Science Foundation of China(Nos.21771062 and 52174391)the College Students’Innovation and Entrepreneurship Training Program(No.S2021105330745)
文摘The extremely low electrical conductivity and ion-diffusion coefficient of Li_(2)FeSiO_(4)limits its application as a cathode material in lithium-ion batteries.Therefore,in situ boron-doped Li_(2)FeSi_(1)-xB_(x)O_(4-δ)/C(x=0,0.01,0.03,0.05 and 0.07)at the Si site was prepared via the solid-state reaction method using pitch as the c arbon source.B doping in the lattice structure and a c arbon coating on the surface of the composites could effectively enhance the Li^(+)/electron conductivity.Moreover,the reduced particle size of the active material with the relatively high specific area via borondoped modification could improve the wettability between the electrolyte and cathode.With the synergistic effect of appropriate boron doping and carbon coating,it exhibits a good rate performance,specific capacity,and cycling performance.As a result,the as-prepared Li_(2)FeSi_(0.95)B_(0.05)O_(4-δ)/C cathode showed a high discharge capacity of 160.7mAh·g^(-1)at 0.2C,and the capacity retention rate was 96%after 100 cycles at 1.0C.This work presents an effective path for designing advanced cathode materials for lithium-ion batteries.