Although microbes primarily are single-cell organisms,they are not isolated individuals.Microbes use various means to communicate with one another.Based on the communication,microbes establish a social interaction wit...Although microbes primarily are single-cell organisms,they are not isolated individuals.Microbes use various means to communicate with one another.Based on the communication,microbes establish a social interaction with their neighbors in a specific ecological niche,and cooperative behaviors are normally performed to provide benefits on the population and species levels.In the microbiome era,in order to better understand the behaviors of microbes,deep understanding of the social communication between microbes hence becomes a key to interpret microbe behaviors.Here we summarize the molecular mechanisms that underlie the cell-to-cell communication in prokaryotic and eukaryotic microorganisms,the recent discoveries and novel technologies in understanding the interspecies and interkingdom communication,and discuss new concepts of the sociomicrobiology.展开更多
Stem cells are undifferentiated cells that retain the ability to self-renew and differentiate into specialized cells,offering a promising resource to generate requisite cell types in regenerative medicine[1,2].Haemato...Stem cells are undifferentiated cells that retain the ability to self-renew and differentiate into specialized cells,offering a promising resource to generate requisite cell types in regenerative medicine[1,2].Haematopoietic stem cells(HSCs)can differentiate into entire mature blood lineages,sitting at the apex of the haematopoietic hierachy and playing a key role in the long-term maintenance and stabilization of mammalian blood system functions[3,4].HSCs are mostly found in embryo and bone marrow,but also with small amounts in peripheral blood.Under展开更多
In eukaryotic cells,the smallest subunit of chromatin is the nucleosome,which consists of a segment of DNA wound on histone protein cores. Despite many years of effort,the process of nucleosome assembly and disassembl...In eukaryotic cells,the smallest subunit of chromatin is the nucleosome,which consists of a segment of DNA wound on histone protein cores. Despite many years of effort,the process of nucleosome assembly and disassembly is still not very clear. Here,we present a convenient method to investigate the process of nucleosome assembly at the single molecule level. We invented a novel system derived from the yeast nucleoplasmic extracts(YNPE),and demonstrated that the YNPE supports the nucleosome assembly under physiological condition. By combining the total internal reflection fluorescence microscopy with microfluidic flow-cell technique,the dynamic process of nucleosome assembly in YNPE was visualized at single-molecule level. Our system provides a novel in vitro single-molecule tool to investigate the dynamics of nucleosome assembly under physiological conditions.展开更多
基金supported by the National Natural Science Foundation of China(31571288)CAS Interdisciplinary Innovation Team and the Newton Advanced Fellowship(NA140085)from the Royal Society
文摘Although microbes primarily are single-cell organisms,they are not isolated individuals.Microbes use various means to communicate with one another.Based on the communication,microbes establish a social interaction with their neighbors in a specific ecological niche,and cooperative behaviors are normally performed to provide benefits on the population and species levels.In the microbiome era,in order to better understand the behaviors of microbes,deep understanding of the social communication between microbes hence becomes a key to interpret microbe behaviors.Here we summarize the molecular mechanisms that underlie the cell-to-cell communication in prokaryotic and eukaryotic microorganisms,the recent discoveries and novel technologies in understanding the interspecies and interkingdom communication,and discuss new concepts of the sociomicrobiology.
文摘Stem cells are undifferentiated cells that retain the ability to self-renew and differentiate into specialized cells,offering a promising resource to generate requisite cell types in regenerative medicine[1,2].Haematopoietic stem cells(HSCs)can differentiate into entire mature blood lineages,sitting at the apex of the haematopoietic hierachy and playing a key role in the long-term maintenance and stabilization of mammalian blood system functions[3,4].HSCs are mostly found in embryo and bone marrow,but also with small amounts in peripheral blood.Under
基金supported by the National Natural Science Foundation of China (31371264)CAS Interdisciplinary Innovation Team and the Newton Advanced Fellowship (NA140085) from the Royal Society
文摘In eukaryotic cells,the smallest subunit of chromatin is the nucleosome,which consists of a segment of DNA wound on histone protein cores. Despite many years of effort,the process of nucleosome assembly and disassembly is still not very clear. Here,we present a convenient method to investigate the process of nucleosome assembly at the single molecule level. We invented a novel system derived from the yeast nucleoplasmic extracts(YNPE),and demonstrated that the YNPE supports the nucleosome assembly under physiological condition. By combining the total internal reflection fluorescence microscopy with microfluidic flow-cell technique,the dynamic process of nucleosome assembly in YNPE was visualized at single-molecule level. Our system provides a novel in vitro single-molecule tool to investigate the dynamics of nucleosome assembly under physiological conditions.