Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including ...Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies.展开更多
Methanol oxidation reaction(MOR)is a key process in direct methanol fuel cells(DMFCs),determining both energy efficiency and stability.Despite efforts,the impact of dynamic structural changes of Pt-based catalysts on ...Methanol oxidation reaction(MOR)is a key process in direct methanol fuel cells(DMFCs),determining both energy efficiency and stability.Despite efforts,the impact of dynamic structural changes of Pt-based catalysts on MOR performance remains poorly understood.Here,we report on the impact mechanism of dynamic changes on MOR performance in the Pd-Pt concave nanocubes(CNCs)system.Pt with high-index facets exposed abundant active sites for methanol oxidation,resulting in an exceptional mass activity of 0.89 A·mg_(Pt)^(-1).Pd underwent an oxidationredeposition process during MOR,dynamically restructuring the catalyst and producing a volcano-type activity.Pd^(δ+)species generated during oxidative etching promoted OH*formation,accelerating CO oxidation on Pt sites,thus mitigating poisoning.With continued cycling,redeposited Pd partially blocked Pt sites,counteracting the positive effect of the generated Pd^(δ+).The dynamic balance of Pd oxidation and redeposition governed the activity evolution while sustaining the exceptional durability of Pd-Pt CNCs during prolonged cycling.展开更多
Lithium-sulfur (Li-S) batteries have gained great attention due to the high theoretical energy density and low cost,yet their further commercialization has been obstructed by the notorious shuttle effect and sluggish ...Lithium-sulfur (Li-S) batteries have gained great attention due to the high theoretical energy density and low cost,yet their further commercialization has been obstructed by the notorious shuttle effect and sluggish redox dynamics.Herein,we supply a strategy to optimize the electron structure of Ni_(2)P by concurrently introducing B-doped atoms and P vacancies in Ni_(2)P (Vp-B-Ni_(2)P),thereby enhancing the bidirectional sulfur conversion.The study indicates that the simultaneous introduction of B-doped atoms and P vacancies in Ni_(2)P causes the redistribution of electron around Ni atoms,bringing about the upward shift of d-band center of Ni atoms and effective d-p orbital hybridization between Ni atoms and sulfur species,thus strengthening the chemical anchoring for lithium polysulfides (LiPSs) as well as expediting the bidirectional conversion kinetics of sulfur species.Meanwhile,theoretical calculations reveal that the incorporation of B-doped atoms and P vacancies in Ni_(2)P selectively promotes Li2S dissolution and nucleation processes.Thus,the Li-S batteries with Vp-B-Ni_(2)P-separators present outstanding rate ability of 777 m A h g^(-1)at 5 C and high areal capacity of 8.03 mA h cm^(-2)under E/S of 5μL mg^(-1)and sulfur loading of 7.20 mg cm^(-2).This work elucidates that introducing heteroatom and vacancy in metal phosphide collaboratively regulates the electron structure to accelerate bidirectional sulfur conversion.展开更多
Electrocatalytic hydrogen peroxide(H_(2)O_(2))production via the two-electron oxygen reduction reaction(2e−ORR)is promising,but non-metal catalysts with high selectivity are lacking.Herein,a high content of pyrrolic N...Electrocatalytic hydrogen peroxide(H_(2)O_(2))production via the two-electron oxygen reduction reaction(2e−ORR)is promising,but non-metal catalysts with high selectivity are lacking.Herein,a high content of pyrrolic N doped carbon(HPNC)with small mesopores is constructed.Over 80%H_(2)O_(2) selectivity at a wide potential of 0.2–0.6 V is achieved.The finite element simulation reveals that small pore-size mesopores are beneficial to O_(2) adsorption.And in-situ characterization proves that HPNC suppresses the breakage of Osingle bondO bond and enhances the stabilization of *OOH intermediates,thus improving the 2e−ORR performance.This work highlights the combination of non-metal active sites and geometry for 2e−ORR electrocatalysis.展开更多
Al-Cu-Mn alloys are widely used to produce automobile components like cylinder heads and engine blocks because of their capability to retain excellent thermal and mechanical characteristics at high temperatures.Howeve...Al-Cu-Mn alloys are widely used to produce automobile components like cylinder heads and engine blocks because of their capability to retain excellent thermal and mechanical characteristics at high temperatures.However,the Al-Cu-Mn-based alloys demonstrate restricted fluidity,leading to casting defects such as shrinkage and incomplete filling.This research investigated the microstructure and fluidity of Al-4.7Cu-1.0Mn-0.5Mg(wt%)alloy with minor cerium(Ce)addition.The as-cast alloys predominantly compriseα-Al matrix,accompanied by the presence of Al_(2)Cu,Al_(6)Mn,and Al_(8)Cu_(4)Ce phases.The influence of adding Ce on the fluidity of the Al-4.7Cu-1.0Mn-0.5Mg alloy was investigated using a trispiral fluidity test mold in this research.The findings suggest that the addition of Ce within the range of 0.1 wt%to 0.5 wt%in the Al-4.7Cu-1.0Mn-0.5Mg alloy results in an enhancement in fluidity.Specifically,the alloy containing 0.4 wt%Ce exhibits a significant increase in fluidity distance,from 349.7 to 485.7 mm.This improvement can be attributed to the reduction in viscosity,the refinement of secondary dendrite arm spacing,and the modification of secondary phase particles.However,a higher concentration of Ce leads to a decrease in fluidity length,potentially due to the formation of Al_(8)Cu_(4)Ce.展开更多
The neutron capture resonance parameters for 159Tb are crucial for validating nuclear models,nucleosynthesis during the neutron capture process,and nuclear technology applications.In this study,resonance analyses were...The neutron capture resonance parameters for 159Tb are crucial for validating nuclear models,nucleosynthesis during the neutron capture process,and nuclear technology applications.In this study,resonance analyses were performed for the neutron capture cross sections of 159Tb measured at the China Spallation Neutron Source(CSNS)backscattering white neutron beamline(Back-n)facility.The resonance parameters were extracted from the R-Matrix code SAMMY and fitted to the experimental capture yield up to the 1.2 keV resolved resonance region(RRR).The average resonance parameters were determined by performing statistical analysis on the set of the resonance parameters in the RRR.These results were used to fit the measured average capture cross sections using the FITACS code in the unresolved resonance region from 2 keV to 1 MeV.The contributions of partial waves l=0,1,2 to the average capture cross sections are reported.展开更多
Driven by social needs,national policies,and digital innovation,the traditional teaching model of acute and critical care nursing can no longer meet the demand for high-quality acute and critical care nursing talents ...Driven by social needs,national policies,and digital innovation,the traditional teaching model of acute and critical care nursing can no longer meet the demand for high-quality acute and critical care nursing talents in modern medical care.Artificial intelligence(AI)technology provides effective innovative solutions for acute and critical care nursing teaching through capabilities such as virtual simulation,big data technology,and natural language processing.This paper systematically sorts out the application scenarios of AI in acute and critical care nursing teaching,analyzes the current challenges such as technical costs,teachers’literacy,and ethical risks in application,and looks forward to the future development direction from the dimensions of technological integration,policy support,and talent training,aiming to provide useful references for the reform of acute and critical care nursing teaching.展开更多
Heteroatom doping has emerged as a powerful strategy to optimize the catalytic and adsorption abilities of electrocatalysts by regulating the electronic structure,thereby enabling the development of efficient electroc...Heteroatom doping has emerged as a powerful strategy to optimize the catalytic and adsorption abilities of electrocatalysts by regulating the electronic structure,thereby enabling the development of efficient electrocatalysts for lithium-sulfur(Li-S)batteries.However,the correlation between the properties of doped atoms and adsorptio n-catalytic ability,as well as the interconnection between adsorption strength and catalytic activity,remains underexplored.Herein,we employed halogen atoms(F,Cl,and Br)with different electronegativities to dope nickel phosphide(Ni_(2)P),aiming to modulate the adsorption properties toward lithium polysulfides(LiPSs).We systematically explored the relationship between the electronegativity of the doping atoms and the adsorption strength,followed by exploring the connection between adsorption and catalytic capabilities.Combined experimental and theoretical analyses reveal that doping halogen atoms effectively strengthens d-p orbital hybridization between Ni atoms and S atoms,thereby enhancing LiPSs anchoring and conversion.Specifically,the chemical adsorption capability is enhanced as the electronegativity of the doped atoms increases.Moreover,the catalytic activity presents a volcano-like trend with the enhancement of adsorption performance,wherein the activity initially increases and subsequently diminishes.Therefore,Cl-doped Ni_(2)P with moderate chemisorption ability exhibits optimal redox kinetics in bidirectional sulfur conversion.Consequently,the Li-S batteries with Cl-Ni_(2)P-separators deliver a high-rate capacity of 790 mAh g^(-1)at 5 C and achieve a remarkable areal capacity of 7.36 mAh cm^(-2)under practical conditions(sulfur loading:7.10 mg cm^(-2);electrolyte/sulfur(E/S)ratio:5μL mg^(-1)).This work uncovers the significance of achieving a balance between adsorption and catalytic capabilities,offering insights into designing efficient electrocatalysts for lithium-sulfur batteries.展开更多
To satisfy the demands of modern society for high-energy–density sulfide-based all-solid-state lithium batteries(ASSLBs),Ni-rich cathode materials have gained much attention for their high capacity and energy density...To satisfy the demands of modern society for high-energy–density sulfide-based all-solid-state lithium batteries(ASSLBs),Ni-rich cathode materials have gained much attention for their high capacity and energy density.However,their practical deployment is hindered by accelerated interface degradation and capacity decay originating from surface oxygen release and lattice oxygen activation during prolonged cycling.In this study,Ti_(x)NbB_((1−x))C_(2)was successfully coated on the surface of LiNi_(0.94)Co_(0.05)Mn_(0.01)O_(2).Density functional theory(DFT)calculations first elucidate a“point-to-point”anchoring mechanism where each surface oxygen atom coordinates with single species(Ti/Nb/B)offered by Ti_(x)NbB_((1−x))C_(2),which forms robust O–M bonds and sustain a stable interface structure.The electron energy loss spectroscopy(EELS)reveals the segregation of Ti/Nb toward subsurface layers during cycling,creating an optimized lattice oxygen coordination environment and suppressing oxygen activation.The dual oxygen stabilization mechanism dramatically improves the reversibility of phase transition and the structural stability of the Ni-rich cathode materials.Moreover,Ti_(x)NbB_((1−x))C_(2)as the protective layer decreases mechanical strain and suppresses the parasitic reactions.Consequently,the engineered cathode delivers 91%capacity retention after 1000 cycles at 0.3 C,suggesting excellent cycling stability.The research delivers a new design philosophy for the coating layer that can stabilize surface oxygen.Furthermore,the atomistic understanding of the structure–property relationship of the Ni-rich cathode materials provides valuable guidance for the future design of new cathode materials with superior structural stability in ASSLBs.展开更多
Esophageal squamous cell carcinoma continues to pose a significant global health burden due to its aggressive nature and poor prognosis,often diagnosed at an advanced stage.This retrospective study by Ren et al aims t...Esophageal squamous cell carcinoma continues to pose a significant global health burden due to its aggressive nature and poor prognosis,often diagnosed at an advanced stage.This retrospective study by Ren et al aims to identify long-term survival outcomes and the associated risk factors for esophageal squamous cell carcinoma patients,employing Kaplan-Meier survival analysis and Cox re-gression models.The study highlights critical prognostic factors such as tumor stage,age,gender,and treatment modality.The authors emphasize the im-portance of clinical factors in predicting survival and underscore the necessity of incorporating molecular biomarkers and psychosocial elements into survival models for more accurate predictions.While the study offers valuable insights,it also points to the potential for integrating modern therapies such as chemoradio-therapy and targeted treatments to improve survival outcomes.Future research should focus on prospective cohort studies,external validation,and the de-velopment of personalized treatment strategies that combine clinical,molecular,and psychosocial factors to optimize patient care.展开更多
Osteopontin(OPN),a key extracellular matrix protein,promotes gastrointestinal tumor progression by activating the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)pathway.OPN enhances tumor proliferation and s...Osteopontin(OPN),a key extracellular matrix protein,promotes gastrointestinal tumor progression by activating the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)pathway.OPN enhances tumor proliferation and survival through mechanistic target of rapamycin and B-cell lymphoma 2 upregulation(e.g.,via denticleless E3 ubiquitin protein ligase homolog in hepatocellular carcinoma)and drives metastasis via PI3K/AKT-mediated epithelial-mesenchymal transition and androgen receptor(AR)activation(e.g.,via the OPN-RAN-AR axis in pancreatic cancer).Additionally,OPN induces chemoresistance by activating anti-apoptotic proteins(e.g.,XIAP via CXCR3/PI3K/AKT in colorectal cancer)and remodels the tumor microenvironment through VEGF-dependent angiogenesis and cluster of differentiation 44-PI3K/AKT-mediated immune evasion.Its interaction with TLR4,WNT,and other pathways amplifies oncogenic effects.Therapies targeting the OPN-PI3K/AKT axis(e.g.,PI3K inhibitors like LY294002)or combination treatments(e.g.,with EGFR-TKIs)show promise for reversing drug resistance.Future research should focus on OPN isoform specificity,clinical translation,and interactions with autophagy and long non-coding RNAs to refine precision therapies.This review summarizes recent advances in understanding the molecular mechanisms,therapeutic targets,and clinical challenges of the OPN-PI3K/AKT axis in gastrointestinal tumors,providing a foundation for overcoming resistance and developing precision therapies.展开更多
The research on metal dimer clusters is of great importance,owing to the potential in modulating the adsorption behavior towards reaction intermediates.Here,we develop a loading heightening strategy to obtain a 32.5wt...The research on metal dimer clusters is of great importance,owing to the potential in modulating the adsorption behavior towards reaction intermediates.Here,we develop a loading heightening strategy to obtain a 32.5wt%Fe-dimer catalyst(Fe-32.5).The co-anchoring of two Fe atoms in a single triazine ring of carbon nitride with an atomic spacing of∼0.23nm is proved.Fe atoms occupy the pores of the triazine ring in the lower iron content sample(Fe-12.9 and Fe-17.1).However,with the increase of iron content to 32.5wt%,two Fe atoms simultaneously occupy one triazine ring.For Fe-32.5,besides the main peak located at∼1.5Åcorresponding to the Fe–N interaction,a peak attributed to Fe–Fe bonding is observed at∼2.2Åin Fourier-transformed k3-weithted extended X-ray absorption fine structure.Density functional theoretical calculations reveal that Fe-dimer in Fe-32.5 induces a charge redistribution compared with that in Fe-12.9 and Fe-17.1.H_(2)O^(∗)is adsorbed on O^(∗)via hydrogen bonding in Fe-12.9 and Fe-17.1.However,H_(2)O^(∗)and O^(∗)in Fe-32.5 are adsorbed on Fe–Fe dimer,resulting in a decrease in the total energy of the reaction process.For the two former,O_(2)^(-)∗adsorbs on individual Fe atoms.Fe-dimer in Fe-32.5 adsorbs O_(2)^(-)∗in the form of bridge bonds,which facilitates the·O_(2)^(-)release.Furthermore,an enhanced affinity for the substrate 3,3′,5,5′-tetramethylbenzidine and higher peroxidase-like activity were displayed.This work provides an effective mean to synthesize metal dimer clusters through high loading.展开更多
In this study,a NbB_(2)/AZ91 composite exhibiting desirable mechanical properties was fabricated using a sample casting technique,followed by hard-plate rolling and short-term annealing.The effect of NbB_(2)particles ...In this study,a NbB_(2)/AZ91 composite exhibiting desirable mechanical properties was fabricated using a sample casting technique,followed by hard-plate rolling and short-term annealing.The effect of NbB_(2)particles on the microstructural evolution of the AZ91 alloy was investigated.The presence of NbB_(2)was shown to have a grain-refining effect on the AZ91 alloy and promoted dynamic recrystallization(DRX)and precipitation of fine Mg_(17)Al_(12)phases via particle-stimulated nucleation(PSN).Tensile testing revealed substantial enhancements in the ultimate tensile strength(UTS),yield strength(YS),and elongation(EL)of the as-rolled AZ91 alloy,with values of 379 MPa,292 MPa,and 14.7%,respectively,owing to the incorporation of NbB_(2)particles.Annealing led to further enhancements in EL with slight reductions in UTS and YS(360 MPa,252 MPa,and 16.8%,respectively).Owing to grain refinement and the PSN effect of the NbB_(2)particles,a significant number of geometrically necessary dislocations(GNDs)were induced in the matrix during the rolling process,which reduces the nucleation barrier and increases the number of nucleation sites for the recrystallized grains and Mg_(17)Al_(12)precipitates.Meanwhile,many residual dislocations and fine Mg_(17)Al_(12)precipitates in the as-rolled alloys were annihilated during annealing,resulting in slight grain growth and coarsening.The strengthening mechanism of the NbB_(2)/AZ91 composite are mainly associated with grain-refinement strengthening,particle-induced dislocation strengthening,strengthening resulting from mismatching coefficients of thermal expansion(CTE),and heterodeformation-induced(HDI)strengthening.Textural weakening,increased activation of non-basal slip systems,more-uniform strain patterns resulting from NbB_(2)particles,and precipitation are mainly responsible for enhancing ductility.展开更多
BACKGROUND Esophageal cancer surgery is associated with a high risk of postoperative pulmonary complications,particularly pneumonia.Although conventional respiratory rehabilitation strategies–such as preoperative ins...BACKGROUND Esophageal cancer surgery is associated with a high risk of postoperative pulmonary complications,particularly pneumonia.Although conventional respiratory rehabilitation strategies–such as preoperative inspiratory muscle training–have demonstrated limited efficacy,the low-intensity traditional Chinese Qigong practice"Liuzijue"(Six-Character Formula)shows promise.However,robust clinical evidence supporting its use in patients undergoing esophagectomy remains lacking.AIM To evaluate the effects of early postoperative"Liuzijue"training on pulmonary function and pneumonia incidence following radical esophagectomy.METHODS This retrospective study included 306 patients who underwent esophagectomy.The control group(n=163)received standard care,consisting of abdominal breathing,incentive spirometry,and early ambulation.The intervention group(n=143)received the same standard care plus twice-daily"Liuzijue"training for 14 days.Primary outcomes were the incidence of pneumonia(defined by Centers for Disease Control and Prevention criteria)and changes(Δ)in forced vital capacity(FVC),forced expiratory volume in 1 second(FEV_(1)),and maximum voluntary ventilation(MVV)from baseline to postoperative day 14.RESULTS The"Liuzijue"intervention was associated with a significantly lower incidence of pneumonia(11.9%vs 24.5%,P=0.005;relative risk=0.48).Significant improvements were observed inΔFVC(+502.1 mL vs+326.5 mL,P<0.001),ΔFEV_(1)(+701.7 mL vs+434.4 mL,P<0.001),andΔMVV(+19.4 L/minute vs+14.4 L/minute,P<0.001).Absolute FEV_(1) values on postoperative day 14 were higher in the intervention group(2270.8 mL vs 2066.1 mL,P=0.021),along with significantly lower Borg dyspnea/fatigue scores(P=0.045).No significant differences were observed in changes in diffusing capacity of the lung for carbon monoxide,total lung capacity,or 6-minute walk distance.CONCLUSION Early initiation of"Liuzijue"training after esophagectomy is associated with reduced pneumonia incidence and accelerated recovery of key pulmonary function parameters.These findings support the integration of"Liuzijue"into enhanced recovery after surgery protocols for esophageal cancer patients.展开更多
Electron-positron colliders operating in the GeV center-of-mass range,or tau-charm energy region,have been proved to enable competitive frontier research due to several unique features.With the progress of high-energy...Electron-positron colliders operating in the GeV center-of-mass range,or tau-charm energy region,have been proved to enable competitive frontier research due to several unique features.With the progress of high-energy physics in the last two decades,a new-generation Tau-Charm factory,called the Super Tau-Charm Facility(STCF),has been actively promoted by the particle physics community in China.STCF has the potential to address fundamental questions such as the essence of color confinement and the matter-antimatter asymmetry within the next decades.The main design goals of the STCF are a center-of-mass energy ranging from 2 to 7 GeV and a luminosity surpassing 5×10^(34)cm^(−2)s^(−1)that is optimized at a center-of-mass energy of 4 GeV,which is approximately 50 times that of the currently operating Tau-Charm factory-BEPCII.The STCF accelerator has two main parts:a double-ring collider with a crab-waist collision scheme and an injector that provides top-up injections for both electron and positron beams.As a typical third-generation electron-positron circular collider,the STCF accelerator faces many challenges in both accelerator physics and technology.In this paper,the conceptual design of the STCF accelerator complex is presented,including the ongoing efforts and plans for technological research and develop-ment,as well as the required infrastructure.The STCF project aims to secure support from the Chinese central government for its construction during the 15th Five-Year Plan(2026-2030).展开更多
Lithium metal batteries,with their light mass anode and high theoretical specific capacity of 3860 m Ah/g,have great potential for development in achieving high energy density.However,the generation of lithium dendrit...Lithium metal batteries,with their light mass anode and high theoretical specific capacity of 3860 m Ah/g,have great potential for development in achieving high energy density.However,the generation of lithium dendrites and the loss of dead lithium pose a serious threat to the safety and long-cycle stability of batteries.Herein,we utilize the Lewis acid-base interaction principle for lithium-ion migration regulation.Through loading solid-acids onto molecular sieves to immobilize Lewis base(PF_(6^(-))),we achieve accelerated dissociation of lithium salts and successfully increase the lithium ion transference number to 0.44.Lewis acid-base interaction helps lithium metal batteries achieve more uniform lithium deposition,with an average CE improved to 92.8%.The symmetrical cells can be plated/stripped stably for more than 800 h of cycling.Full cell with high surface-loaded LFP cathode(14 mg/cm^(2))exhibits impressively high capacity retention of 90.7%after 120 cycles at 0.5 C.展开更多
基金Supported by Xuhui District Health Commission,No.SHXH202214.
文摘Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies.
基金supported by the National Natural Science Foundation of China(Nos.12222508 and 12475325)the National Key Research and Development Program of China(Nos.2024YFA1509201 and 2023YFA1506304)the beamlines BL10B(No.31131.02.HLS.PES)and BL01B(No.31131.02.HLS.IRSM)in NSRL,and BL11B(No.31124.02.SSRF.BL11B)in SSRF for synchrotron radiation measurements.
文摘Methanol oxidation reaction(MOR)is a key process in direct methanol fuel cells(DMFCs),determining both energy efficiency and stability.Despite efforts,the impact of dynamic structural changes of Pt-based catalysts on MOR performance remains poorly understood.Here,we report on the impact mechanism of dynamic changes on MOR performance in the Pd-Pt concave nanocubes(CNCs)system.Pt with high-index facets exposed abundant active sites for methanol oxidation,resulting in an exceptional mass activity of 0.89 A·mg_(Pt)^(-1).Pd underwent an oxidationredeposition process during MOR,dynamically restructuring the catalyst and producing a volcano-type activity.Pd^(δ+)species generated during oxidative etching promoted OH*formation,accelerating CO oxidation on Pt sites,thus mitigating poisoning.With continued cycling,redeposited Pd partially blocked Pt sites,counteracting the positive effect of the generated Pd^(δ+).The dynamic balance of Pd oxidation and redeposition governed the activity evolution while sustaining the exceptional durability of Pd-Pt CNCs during prolonged cycling.
基金Institute of Technology Research Fund Program for Young Scholars21C Innovation Laboratory Contemporary Amperex Technology Co.,Limited,Ninde, 352100, China (21C–OP-202314)。
文摘Lithium-sulfur (Li-S) batteries have gained great attention due to the high theoretical energy density and low cost,yet their further commercialization has been obstructed by the notorious shuttle effect and sluggish redox dynamics.Herein,we supply a strategy to optimize the electron structure of Ni_(2)P by concurrently introducing B-doped atoms and P vacancies in Ni_(2)P (Vp-B-Ni_(2)P),thereby enhancing the bidirectional sulfur conversion.The study indicates that the simultaneous introduction of B-doped atoms and P vacancies in Ni_(2)P causes the redistribution of electron around Ni atoms,bringing about the upward shift of d-band center of Ni atoms and effective d-p orbital hybridization between Ni atoms and sulfur species,thus strengthening the chemical anchoring for lithium polysulfides (LiPSs) as well as expediting the bidirectional conversion kinetics of sulfur species.Meanwhile,theoretical calculations reveal that the incorporation of B-doped atoms and P vacancies in Ni_(2)P selectively promotes Li2S dissolution and nucleation processes.Thus,the Li-S batteries with Vp-B-Ni_(2)P-separators present outstanding rate ability of 777 m A h g^(-1)at 5 C and high areal capacity of 8.03 mA h cm^(-2)under E/S of 5μL mg^(-1)and sulfur loading of 7.20 mg cm^(-2).This work elucidates that introducing heteroatom and vacancy in metal phosphide collaboratively regulates the electron structure to accelerate bidirectional sulfur conversion.
文摘Electrocatalytic hydrogen peroxide(H_(2)O_(2))production via the two-electron oxygen reduction reaction(2e−ORR)is promising,but non-metal catalysts with high selectivity are lacking.Herein,a high content of pyrrolic N doped carbon(HPNC)with small mesopores is constructed.Over 80%H_(2)O_(2) selectivity at a wide potential of 0.2–0.6 V is achieved.The finite element simulation reveals that small pore-size mesopores are beneficial to O_(2) adsorption.And in-situ characterization proves that HPNC suppresses the breakage of Osingle bondO bond and enhances the stabilization of *OOH intermediates,thus improving the 2e−ORR performance.This work highlights the combination of non-metal active sites and geometry for 2e−ORR electrocatalysis.
基金Project supported by the National Natural Science Foundation of China (52171030)the Key Basic Research Project of the Basic Strengthen Program (2021-JCJQ-ZD-043-00)the National Key Research and Development Program of China (2018YFA0702903)。
文摘Al-Cu-Mn alloys are widely used to produce automobile components like cylinder heads and engine blocks because of their capability to retain excellent thermal and mechanical characteristics at high temperatures.However,the Al-Cu-Mn-based alloys demonstrate restricted fluidity,leading to casting defects such as shrinkage and incomplete filling.This research investigated the microstructure and fluidity of Al-4.7Cu-1.0Mn-0.5Mg(wt%)alloy with minor cerium(Ce)addition.The as-cast alloys predominantly compriseα-Al matrix,accompanied by the presence of Al_(2)Cu,Al_(6)Mn,and Al_(8)Cu_(4)Ce phases.The influence of adding Ce on the fluidity of the Al-4.7Cu-1.0Mn-0.5Mg alloy was investigated using a trispiral fluidity test mold in this research.The findings suggest that the addition of Ce within the range of 0.1 wt%to 0.5 wt%in the Al-4.7Cu-1.0Mn-0.5Mg alloy results in an enhancement in fluidity.Specifically,the alloy containing 0.4 wt%Ce exhibits a significant increase in fluidity distance,from 349.7 to 485.7 mm.This improvement can be attributed to the reduction in viscosity,the refinement of secondary dendrite arm spacing,and the modification of secondary phase particles.However,a higher concentration of Ce leads to a decrease in fluidity length,potentially due to the formation of Al_(8)Cu_(4)Ce.
基金supported by the National Natural Science Foundation of China(Nos.12365018,U2032146,12465024)Natural Science Foundation of Inner Mongolia(Nos.2023MS01005,2024ZD23,2024FX30)the program of Innovative Research Team and Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(Nos.NMGIRT2217,NJYT23109)。
文摘The neutron capture resonance parameters for 159Tb are crucial for validating nuclear models,nucleosynthesis during the neutron capture process,and nuclear technology applications.In this study,resonance analyses were performed for the neutron capture cross sections of 159Tb measured at the China Spallation Neutron Source(CSNS)backscattering white neutron beamline(Back-n)facility.The resonance parameters were extracted from the R-Matrix code SAMMY and fitted to the experimental capture yield up to the 1.2 keV resolved resonance region(RRR).The average resonance parameters were determined by performing statistical analysis on the set of the resonance parameters in the RRR.These results were used to fit the measured average capture cross sections using the FITACS code in the unresolved resonance region from 2 keV to 1 MeV.The contributions of partial waves l=0,1,2 to the average capture cross sections are reported.
文摘Driven by social needs,national policies,and digital innovation,the traditional teaching model of acute and critical care nursing can no longer meet the demand for high-quality acute and critical care nursing talents in modern medical care.Artificial intelligence(AI)technology provides effective innovative solutions for acute and critical care nursing teaching through capabilities such as virtual simulation,big data technology,and natural language processing.This paper systematically sorts out the application scenarios of AI in acute and critical care nursing teaching,analyzes the current challenges such as technical costs,teachers’literacy,and ethical risks in application,and looks forward to the future development direction from the dimensions of technological integration,policy support,and talent training,aiming to provide useful references for the reform of acute and critical care nursing teaching.
基金supported by the Beijing Institute of Technology Research Fund Program for Young Scholars and 21C Innovation Laboratory Contemporary Amperex Technology Co.,Limited,Ninde,352100,China(21C-OP-202314)。
文摘Heteroatom doping has emerged as a powerful strategy to optimize the catalytic and adsorption abilities of electrocatalysts by regulating the electronic structure,thereby enabling the development of efficient electrocatalysts for lithium-sulfur(Li-S)batteries.However,the correlation between the properties of doped atoms and adsorptio n-catalytic ability,as well as the interconnection between adsorption strength and catalytic activity,remains underexplored.Herein,we employed halogen atoms(F,Cl,and Br)with different electronegativities to dope nickel phosphide(Ni_(2)P),aiming to modulate the adsorption properties toward lithium polysulfides(LiPSs).We systematically explored the relationship between the electronegativity of the doping atoms and the adsorption strength,followed by exploring the connection between adsorption and catalytic capabilities.Combined experimental and theoretical analyses reveal that doping halogen atoms effectively strengthens d-p orbital hybridization between Ni atoms and S atoms,thereby enhancing LiPSs anchoring and conversion.Specifically,the chemical adsorption capability is enhanced as the electronegativity of the doped atoms increases.Moreover,the catalytic activity presents a volcano-like trend with the enhancement of adsorption performance,wherein the activity initially increases and subsequently diminishes.Therefore,Cl-doped Ni_(2)P with moderate chemisorption ability exhibits optimal redox kinetics in bidirectional sulfur conversion.Consequently,the Li-S batteries with Cl-Ni_(2)P-separators deliver a high-rate capacity of 790 mAh g^(-1)at 5 C and achieve a remarkable areal capacity of 7.36 mAh cm^(-2)under practical conditions(sulfur loading:7.10 mg cm^(-2);electrolyte/sulfur(E/S)ratio:5μL mg^(-1)).This work uncovers the significance of achieving a balance between adsorption and catalytic capabilities,offering insights into designing efficient electrocatalysts for lithium-sulfur batteries.
基金supported by the National Natural Science Foundation of China(21203008,21975025,12274025,22372008,and 22179007)Hainan Province Science and Technology Special Fund(ZDYF2021SHFZ232 and ZDYF2023GXJS022)Hainan Province Postdoctoral Science Foundation(300333)。
文摘To satisfy the demands of modern society for high-energy–density sulfide-based all-solid-state lithium batteries(ASSLBs),Ni-rich cathode materials have gained much attention for their high capacity and energy density.However,their practical deployment is hindered by accelerated interface degradation and capacity decay originating from surface oxygen release and lattice oxygen activation during prolonged cycling.In this study,Ti_(x)NbB_((1−x))C_(2)was successfully coated on the surface of LiNi_(0.94)Co_(0.05)Mn_(0.01)O_(2).Density functional theory(DFT)calculations first elucidate a“point-to-point”anchoring mechanism where each surface oxygen atom coordinates with single species(Ti/Nb/B)offered by Ti_(x)NbB_((1−x))C_(2),which forms robust O–M bonds and sustain a stable interface structure.The electron energy loss spectroscopy(EELS)reveals the segregation of Ti/Nb toward subsurface layers during cycling,creating an optimized lattice oxygen coordination environment and suppressing oxygen activation.The dual oxygen stabilization mechanism dramatically improves the reversibility of phase transition and the structural stability of the Ni-rich cathode materials.Moreover,Ti_(x)NbB_((1−x))C_(2)as the protective layer decreases mechanical strain and suppresses the parasitic reactions.Consequently,the engineered cathode delivers 91%capacity retention after 1000 cycles at 0.3 C,suggesting excellent cycling stability.The research delivers a new design philosophy for the coating layer that can stabilize surface oxygen.Furthermore,the atomistic understanding of the structure–property relationship of the Ni-rich cathode materials provides valuable guidance for the future design of new cathode materials with superior structural stability in ASSLBs.
文摘Esophageal squamous cell carcinoma continues to pose a significant global health burden due to its aggressive nature and poor prognosis,often diagnosed at an advanced stage.This retrospective study by Ren et al aims to identify long-term survival outcomes and the associated risk factors for esophageal squamous cell carcinoma patients,employing Kaplan-Meier survival analysis and Cox re-gression models.The study highlights critical prognostic factors such as tumor stage,age,gender,and treatment modality.The authors emphasize the im-portance of clinical factors in predicting survival and underscore the necessity of incorporating molecular biomarkers and psychosocial elements into survival models for more accurate predictions.While the study offers valuable insights,it also points to the potential for integrating modern therapies such as chemoradio-therapy and targeted treatments to improve survival outcomes.Future research should focus on prospective cohort studies,external validation,and the de-velopment of personalized treatment strategies that combine clinical,molecular,and psychosocial factors to optimize patient care.
基金Supported by Hongkou District Health Commission of Shanghai Municipality,No.“Hongwei”2303-10.
文摘Osteopontin(OPN),a key extracellular matrix protein,promotes gastrointestinal tumor progression by activating the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)pathway.OPN enhances tumor proliferation and survival through mechanistic target of rapamycin and B-cell lymphoma 2 upregulation(e.g.,via denticleless E3 ubiquitin protein ligase homolog in hepatocellular carcinoma)and drives metastasis via PI3K/AKT-mediated epithelial-mesenchymal transition and androgen receptor(AR)activation(e.g.,via the OPN-RAN-AR axis in pancreatic cancer).Additionally,OPN induces chemoresistance by activating anti-apoptotic proteins(e.g.,XIAP via CXCR3/PI3K/AKT in colorectal cancer)and remodels the tumor microenvironment through VEGF-dependent angiogenesis and cluster of differentiation 44-PI3K/AKT-mediated immune evasion.Its interaction with TLR4,WNT,and other pathways amplifies oncogenic effects.Therapies targeting the OPN-PI3K/AKT axis(e.g.,PI3K inhibitors like LY294002)or combination treatments(e.g.,with EGFR-TKIs)show promise for reversing drug resistance.Future research should focus on OPN isoform specificity,clinical translation,and interactions with autophagy and long non-coding RNAs to refine precision therapies.This review summarizes recent advances in understanding the molecular mechanisms,therapeutic targets,and clinical challenges of the OPN-PI3K/AKT axis in gastrointestinal tumors,providing a foundation for overcoming resistance and developing precision therapies.
基金financially supported by National Natural Science Foundation of China(No.52301011)Hainan Provincial Natural Science Foundation of China(No.524QN226)the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices,Ministry of Education,Jianghan University(No.JDGD-202315).
文摘The research on metal dimer clusters is of great importance,owing to the potential in modulating the adsorption behavior towards reaction intermediates.Here,we develop a loading heightening strategy to obtain a 32.5wt%Fe-dimer catalyst(Fe-32.5).The co-anchoring of two Fe atoms in a single triazine ring of carbon nitride with an atomic spacing of∼0.23nm is proved.Fe atoms occupy the pores of the triazine ring in the lower iron content sample(Fe-12.9 and Fe-17.1).However,with the increase of iron content to 32.5wt%,two Fe atoms simultaneously occupy one triazine ring.For Fe-32.5,besides the main peak located at∼1.5Åcorresponding to the Fe–N interaction,a peak attributed to Fe–Fe bonding is observed at∼2.2Åin Fourier-transformed k3-weithted extended X-ray absorption fine structure.Density functional theoretical calculations reveal that Fe-dimer in Fe-32.5 induces a charge redistribution compared with that in Fe-12.9 and Fe-17.1.H_(2)O^(∗)is adsorbed on O^(∗)via hydrogen bonding in Fe-12.9 and Fe-17.1.However,H_(2)O^(∗)and O^(∗)in Fe-32.5 are adsorbed on Fe–Fe dimer,resulting in a decrease in the total energy of the reaction process.For the two former,O_(2)^(-)∗adsorbs on individual Fe atoms.Fe-dimer in Fe-32.5 adsorbs O_(2)^(-)∗in the form of bridge bonds,which facilitates the·O_(2)^(-)release.Furthermore,an enhanced affinity for the substrate 3,3′,5,5′-tetramethylbenzidine and higher peroxidase-like activity were displayed.This work provides an effective mean to synthesize metal dimer clusters through high loading.
基金supported by the National Natural Science Foundation of China[52171030]the National Key Research and Development Program of China[2018YFA0702903]。
文摘In this study,a NbB_(2)/AZ91 composite exhibiting desirable mechanical properties was fabricated using a sample casting technique,followed by hard-plate rolling and short-term annealing.The effect of NbB_(2)particles on the microstructural evolution of the AZ91 alloy was investigated.The presence of NbB_(2)was shown to have a grain-refining effect on the AZ91 alloy and promoted dynamic recrystallization(DRX)and precipitation of fine Mg_(17)Al_(12)phases via particle-stimulated nucleation(PSN).Tensile testing revealed substantial enhancements in the ultimate tensile strength(UTS),yield strength(YS),and elongation(EL)of the as-rolled AZ91 alloy,with values of 379 MPa,292 MPa,and 14.7%,respectively,owing to the incorporation of NbB_(2)particles.Annealing led to further enhancements in EL with slight reductions in UTS and YS(360 MPa,252 MPa,and 16.8%,respectively).Owing to grain refinement and the PSN effect of the NbB_(2)particles,a significant number of geometrically necessary dislocations(GNDs)were induced in the matrix during the rolling process,which reduces the nucleation barrier and increases the number of nucleation sites for the recrystallized grains and Mg_(17)Al_(12)precipitates.Meanwhile,many residual dislocations and fine Mg_(17)Al_(12)precipitates in the as-rolled alloys were annihilated during annealing,resulting in slight grain growth and coarsening.The strengthening mechanism of the NbB_(2)/AZ91 composite are mainly associated with grain-refinement strengthening,particle-induced dislocation strengthening,strengthening resulting from mismatching coefficients of thermal expansion(CTE),and heterodeformation-induced(HDI)strengthening.Textural weakening,increased activation of non-basal slip systems,more-uniform strain patterns resulting from NbB_(2)particles,and precipitation are mainly responsible for enhancing ductility.
基金Supported by Xuhui District Health Commission,No.SHXH202214.
文摘BACKGROUND Esophageal cancer surgery is associated with a high risk of postoperative pulmonary complications,particularly pneumonia.Although conventional respiratory rehabilitation strategies–such as preoperative inspiratory muscle training–have demonstrated limited efficacy,the low-intensity traditional Chinese Qigong practice"Liuzijue"(Six-Character Formula)shows promise.However,robust clinical evidence supporting its use in patients undergoing esophagectomy remains lacking.AIM To evaluate the effects of early postoperative"Liuzijue"training on pulmonary function and pneumonia incidence following radical esophagectomy.METHODS This retrospective study included 306 patients who underwent esophagectomy.The control group(n=163)received standard care,consisting of abdominal breathing,incentive spirometry,and early ambulation.The intervention group(n=143)received the same standard care plus twice-daily"Liuzijue"training for 14 days.Primary outcomes were the incidence of pneumonia(defined by Centers for Disease Control and Prevention criteria)and changes(Δ)in forced vital capacity(FVC),forced expiratory volume in 1 second(FEV_(1)),and maximum voluntary ventilation(MVV)from baseline to postoperative day 14.RESULTS The"Liuzijue"intervention was associated with a significantly lower incidence of pneumonia(11.9%vs 24.5%,P=0.005;relative risk=0.48).Significant improvements were observed inΔFVC(+502.1 mL vs+326.5 mL,P<0.001),ΔFEV_(1)(+701.7 mL vs+434.4 mL,P<0.001),andΔMVV(+19.4 L/minute vs+14.4 L/minute,P<0.001).Absolute FEV_(1) values on postoperative day 14 were higher in the intervention group(2270.8 mL vs 2066.1 mL,P=0.021),along with significantly lower Borg dyspnea/fatigue scores(P=0.045).No significant differences were observed in changes in diffusing capacity of the lung for carbon monoxide,total lung capacity,or 6-minute walk distance.CONCLUSION Early initiation of"Liuzijue"training after esophagectomy is associated with reduced pneumonia incidence and accelerated recovery of key pulmonary function parameters.These findings support the integration of"Liuzijue"into enhanced recovery after surgery protocols for esophageal cancer patients.
基金supported by the National Key Research and Development Program of China(No.2022YFA1602200)the National Natural Science Foundation of China(Nos.12341501 and 12405174)the Hefei Comprehensive National Science Center for the strong support on the STCF key technology research project.
文摘Electron-positron colliders operating in the GeV center-of-mass range,or tau-charm energy region,have been proved to enable competitive frontier research due to several unique features.With the progress of high-energy physics in the last two decades,a new-generation Tau-Charm factory,called the Super Tau-Charm Facility(STCF),has been actively promoted by the particle physics community in China.STCF has the potential to address fundamental questions such as the essence of color confinement and the matter-antimatter asymmetry within the next decades.The main design goals of the STCF are a center-of-mass energy ranging from 2 to 7 GeV and a luminosity surpassing 5×10^(34)cm^(−2)s^(−1)that is optimized at a center-of-mass energy of 4 GeV,which is approximately 50 times that of the currently operating Tau-Charm factory-BEPCII.The STCF accelerator has two main parts:a double-ring collider with a crab-waist collision scheme and an injector that provides top-up injections for both electron and positron beams.As a typical third-generation electron-positron circular collider,the STCF accelerator faces many challenges in both accelerator physics and technology.In this paper,the conceptual design of the STCF accelerator complex is presented,including the ongoing efforts and plans for technological research and develop-ment,as well as the required infrastructure.The STCF project aims to secure support from the Chinese central government for its construction during the 15th Five-Year Plan(2026-2030).
基金supported by the National Natural Science Foundation of China(No.22179007)。
文摘Lithium metal batteries,with their light mass anode and high theoretical specific capacity of 3860 m Ah/g,have great potential for development in achieving high energy density.However,the generation of lithium dendrites and the loss of dead lithium pose a serious threat to the safety and long-cycle stability of batteries.Herein,we utilize the Lewis acid-base interaction principle for lithium-ion migration regulation.Through loading solid-acids onto molecular sieves to immobilize Lewis base(PF_(6^(-))),we achieve accelerated dissociation of lithium salts and successfully increase the lithium ion transference number to 0.44.Lewis acid-base interaction helps lithium metal batteries achieve more uniform lithium deposition,with an average CE improved to 92.8%.The symmetrical cells can be plated/stripped stably for more than 800 h of cycling.Full cell with high surface-loaded LFP cathode(14 mg/cm^(2))exhibits impressively high capacity retention of 90.7%after 120 cycles at 0.5 C.