期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High fiber-to-fiber net gain in erbium-doped thin film lithium niobate waveguide amplifier as an external gain chip
1
作者 Jinli Han Mengqi Li +7 位作者 Rongbo Wu Jianping Yu Lang Gao Zhiwei Fang Min Wang youting liang Haisu Zhang Ya Cheng 《Opto-Electronic Science》 2025年第9期1-10,共10页
Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band.In this work,an erbium-doped thin film lithiu... Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band.In this work,an erbium-doped thin film lithium niobate waveguide amplifier achieving>10 dB off-chip(fiber-to-fiber)net gain and>20 mW fiber-output amplified power is demonstrated,thanks to the low-propagation-loss waveguides and robust waveguide edge-couplers prepared by the photolithography assisted chemomechanical etching technique.Systematic investigation on the fabricated waveguide amplifiers reveals remarkable optical gain around the peak wavelength of 1532 nm as well as the low fiber-coupling loss of-1.2 dB/facet.A fiber Bragg-grating based waveguide laser is further demonstrated using the fabricated waveguide amplifier as the external gain chip,which generates>2 mW off-chip power continuous-wave lasing around the gain peak at 1532 nm.The unambiguous demonstration of fiber-to-fiber net gain of the erbium-doped thinfilm lithium niobate(TFLN)waveguide amplifier as well as its external gain chip application will benefit diverse fields demanding scalable gain elements with highspeed tunability. 展开更多
关键词 integrated photonics thin-film lithium niobate erbium doped waveguide amplifier
在线阅读 下载PDF
Gigahertz-rate-switchable wavefront shaping through integration of metasurfaces with photonic integrated circuit 被引量:5
2
作者 Haozong Zhong Yong Zheng +12 位作者 Jiacheng Sun Zhizhang Wang Rongbo Wu Ling-en Zhang youting liang Qinyi Hua Minghao Ning Jitao Ji Bin Fang Lin Li Tao Li Ya Cheng Shining Zhu 《Advanced Photonics》 SCIE EI CAS CSCD 2024年第1期106-114,共9页
Achieving spatiotemporal control of light at high speeds presents immense possibilities for various applications in communication,computation,metrology,and sensing.The integration of subwavelength metasurfaces and opt... Achieving spatiotemporal control of light at high speeds presents immense possibilities for various applications in communication,computation,metrology,and sensing.The integration of subwavelength metasurfaces and optical waveguides offers a promising approach to manipulate light across multiple degrees of freedom at high speed in compact photonic integrated circuit(PIC)devices.Here,we demonstrate a gigahertz-rate-switchable wavefront shaping by integrating metasurface,lithium niobate on insulator photonic waveguides,and electrodes within a PIC device.As proofs of concept,we showcase the generation of a focus beam with reconfigurable arbitrary polarizations,switchable focusing with lateral focal positions and focal length,orbital angular momentum light beams as well as Bessel beams.Our measurements indicate modulation speeds of up to the gigahertz rate.This integrated platform offers a versatile and efficient means of controlling the light field at high speed within a compact system,paving the way for potential applications in optical communication,computation,sensing,and imaging. 展开更多
关键词 metasurface photonic integrated circuit lithium niobate on insulator high-speed modulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部