Chemical functionalization of graphene is a topic of paramount importance to broaden its applications in chemistry,physics,and biological science but remains a great challenge due to its low chemical activity and poor...Chemical functionalization of graphene is a topic of paramount importance to broaden its applications in chemistry,physics,and biological science but remains a great challenge due to its low chemical activity and poor dispersion.Here,we report a strategy for the photosynergetic electrochemical functionalization of graphene(EFG).By using chloride ion(Cl^(-))as the intercalation anions and co-reactants,the electrogenerated radicals confined in the expanded graphite layers enable efficient radical addition reaction,thus grasping crystallineperfect EFG.We found that the ultraviolet irradiation and applied voltage have increased the surface/interface concentration of Cl,thus boosting the functionalization of graphene.Theoretical calculation and experimental results verified the oxygen evolution reaction(OER)on EFG has been improved by regulating the doping of chlorine atoms.In addition,the reduced interlayer distance and enhanced electrostatic repulsion near the basal plane endow the fabricated EFG-based membrane with high salt retention.This work highlights a method for the in situ functionalization of graphene and the subsequent applications in OER and water desalination.展开更多
Efficacious regulation of the geometric and electronic structures of carbon nanomaterials via the introduction of defects and their synergy is essential to achieving good electrochemical performance.However,the guidel...Efficacious regulation of the geometric and electronic structures of carbon nanomaterials via the introduction of defects and their synergy is essential to achieving good electrochemical performance.However,the guidelines for designing hybrid materials with advantageous structures and the fundamental understanding of their electrocatalytic mechanisms remain unclear.Herein,superfine Pt and PtCu nanoparticles supported by novel S,N‐co‐doped multi‐walled CNT(MWCNTs)were prepared through the innovative pyrolysis of a poly(3,4‐ethylenedioxythiophene)/polyaniline copolymer as a source of S and N.The uniform wrapping of the copolymer around the MWCNTs provides a high density of evenly distributed defects on the surface after the pyrolysis treatment,facilitating the uniform distribution of ultrafine Pt and PtCu nanoparticles.Remarkably,the Pt_(1)Cu_(2)/SN‐MWCNTs show an obviously larger electroactive surface area and higher mass activity,stability,and CO poisoning resistance in methanol oxidation compared to Pt/SN‐MWCNTs,Pt/S‐MWCNTs,Pt/N‐MWCNTs,and commercial Pt/C.Density functional theory studies confirm that the co‐doping of S and N considerably deforms the CNTs and polarizes the adjacent C atoms.Consequently,both the adsorption of Pt1Cu2 onto the SN‐MWCNTs and the subsequent adsorption of methanol are enhanced;in addition,the catalytic activity of Pt_(1)Cu_(2)/SN‐MWCNTs for methanol oxidation is thermodynamically and kinetically more favorable than that of its CNT and N‐CNT counterparts.This work provides a novel method to fabricate high‐performance fuel cell electrocatalysts with highly dispersed and stable Pt‐based nanoparticles on a carbon substrate.展开更多
We fabricate a flexible hybrid nanogenerator (HNG), based on multilayered nanocomposite materials, which integrates a piezoelectric nanogenerator (PENG) and a triboelectric nanogenerator (TENG) into a single str...We fabricate a flexible hybrid nanogenerator (HNG), based on multilayered nanocomposite materials, which integrates a piezoelectric nanogenerator (PENG) and a triboelectric nanogenerator (TENG) into a single structure with only two electrodes. The HNG enables enhancement of the electrical output of the nano- generators. An open-circuit voltage of 280 V and a short-circuit current of 25 μA are achieved by a HNG of 2.5 cm × 2.5 cm in size, superior to the performance of previously reported HNGs. In addition, the energy-conversion process of the HNG relies on the working mechanism of both the PENG and TENG. The polarization direction and doping content of BTO are the two major factors that affect the electrical output. Biomechanical energy harvesting from walking motion or the bending of an arm is also demonstrated.展开更多
The development of stretchable electronics could enhance novel interface structures to solve the stretchability-conductivity dilemma,which remains a major challenge.Herein,we report a nano-liquid metal(LM)-based highl...The development of stretchable electronics could enhance novel interface structures to solve the stretchability-conductivity dilemma,which remains a major challenge.Herein,we report a nano-liquid metal(LM)-based highly robust stretchable electrode(NHSE)with a self-adaptable interface that mimics water-tonet interaction.Based on the in situ assembly of electrospun elastic nanofiber scaffolds and electrosprayed LM nanoparticles,the NHSE exhibits an extremely low sheet resistance of 52 mΩsq^(-1).It is not only insensitive to a large degree of mechanical stretching(i.e.,350%electrical resistance change upon 570%elongation)but also immune to cyclic deformation(i.e.,5%electrical resistance increases after 330000 stretching cycles with 100%elongation).These key properties are far superior to those of the state-of-the-art reports.Its robustness and stability are verified under diverse circumstances,including long-term exposure to air(420 days),cyclic submersion(30000 times),and resilience against mechanical damages.The combination of conductivity,stretchability,and durability makes the NHSE a promising conductor/electrode solution for flexible/stretchable electronics for applications such as wearable on-body physiological signal detection,human-machine interaction,and heating e-skin.展开更多
Lowering the cost while maintaining the highly catalytic performance is greatly beneficial for the development of commercial fuel cells and metal-air batteries.Compared with platinum,palladium holds a stronger oxygen ...Lowering the cost while maintaining the highly catalytic performance is greatly beneficial for the development of commercial fuel cells and metal-air batteries.Compared with platinum,palladium holds a stronger oxygen affinity and high abundance on earth,endowing it a promising alternative to platinum in anion-exchange membrane fuel cells.However,the sluggish oxygen reduction reaction of palladium still remains a great issue and requires the design of stable and efficient palladium-based electrocatalysts.Here,we report the solvothermal/hydrothermal reduction method to prepare a series of PdAg_(x)nanowires.The prepared PdAg_(x)NWs exhibit hollow structure,which greatly improves the utilization of Pd atoms,offering an outstanding ORR performance.Specifically,PdAg_(2)NWs exhibit an onset potential of 0.92 V and mass activity of 350.7 mA mgPd^(-1)at 0.7 V vs.RHE for ORR in 0.1 M KOH solution.This work provides a novel approach for the construction of hollow NWs and their subsequent applications in other electrocatalytic reactions.展开更多
基金supported by the Natural Science Foundation of Guangxi Province(2021GXNSFBA220077,GUIKE AD23026050)National Natural Science Foundation of China(22102035 and 22162006)Innovation Project of Guangxi Graduate Education(XYCBZ2024021).
文摘Chemical functionalization of graphene is a topic of paramount importance to broaden its applications in chemistry,physics,and biological science but remains a great challenge due to its low chemical activity and poor dispersion.Here,we report a strategy for the photosynergetic electrochemical functionalization of graphene(EFG).By using chloride ion(Cl^(-))as the intercalation anions and co-reactants,the electrogenerated radicals confined in the expanded graphite layers enable efficient radical addition reaction,thus grasping crystallineperfect EFG.We found that the ultraviolet irradiation and applied voltage have increased the surface/interface concentration of Cl,thus boosting the functionalization of graphene.Theoretical calculation and experimental results verified the oxygen evolution reaction(OER)on EFG has been improved by regulating the doping of chlorine atoms.In addition,the reduced interlayer distance and enhanced electrostatic repulsion near the basal plane endow the fabricated EFG-based membrane with high salt retention.This work highlights a method for the in situ functionalization of graphene and the subsequent applications in OER and water desalination.
文摘Efficacious regulation of the geometric and electronic structures of carbon nanomaterials via the introduction of defects and their synergy is essential to achieving good electrochemical performance.However,the guidelines for designing hybrid materials with advantageous structures and the fundamental understanding of their electrocatalytic mechanisms remain unclear.Herein,superfine Pt and PtCu nanoparticles supported by novel S,N‐co‐doped multi‐walled CNT(MWCNTs)were prepared through the innovative pyrolysis of a poly(3,4‐ethylenedioxythiophene)/polyaniline copolymer as a source of S and N.The uniform wrapping of the copolymer around the MWCNTs provides a high density of evenly distributed defects on the surface after the pyrolysis treatment,facilitating the uniform distribution of ultrafine Pt and PtCu nanoparticles.Remarkably,the Pt_(1)Cu_(2)/SN‐MWCNTs show an obviously larger electroactive surface area and higher mass activity,stability,and CO poisoning resistance in methanol oxidation compared to Pt/SN‐MWCNTs,Pt/S‐MWCNTs,Pt/N‐MWCNTs,and commercial Pt/C.Density functional theory studies confirm that the co‐doping of S and N considerably deforms the CNTs and polarizes the adjacent C atoms.Consequently,both the adsorption of Pt1Cu2 onto the SN‐MWCNTs and the subsequent adsorption of methanol are enhanced;in addition,the catalytic activity of Pt_(1)Cu_(2)/SN‐MWCNTs for methanol oxidation is thermodynamically and kinetically more favorable than that of its CNT and N‐CNT counterparts.This work provides a novel method to fabricate high‐performance fuel cell electrocatalysts with highly dispersed and stable Pt‐based nanoparticles on a carbon substrate.
基金This research was supported by the Chinese "thousands talents" program for pioneer researcher and by the National Natural Science Foundation of China (No. 51572030), Beijing Natural Science Foundation (No. 2162047), and Chongqing Natural Science and Foundation (No. cstc2016jcyjA0621).
文摘We fabricate a flexible hybrid nanogenerator (HNG), based on multilayered nanocomposite materials, which integrates a piezoelectric nanogenerator (PENG) and a triboelectric nanogenerator (TENG) into a single structure with only two electrodes. The HNG enables enhancement of the electrical output of the nano- generators. An open-circuit voltage of 280 V and a short-circuit current of 25 μA are achieved by a HNG of 2.5 cm × 2.5 cm in size, superior to the performance of previously reported HNGs. In addition, the energy-conversion process of the HNG relies on the working mechanism of both the PENG and TENG. The polarization direction and doping content of BTO are the two major factors that affect the electrical output. Biomechanical energy harvesting from walking motion or the bending of an arm is also demonstrated.
文摘The development of stretchable electronics could enhance novel interface structures to solve the stretchability-conductivity dilemma,which remains a major challenge.Herein,we report a nano-liquid metal(LM)-based highly robust stretchable electrode(NHSE)with a self-adaptable interface that mimics water-tonet interaction.Based on the in situ assembly of electrospun elastic nanofiber scaffolds and electrosprayed LM nanoparticles,the NHSE exhibits an extremely low sheet resistance of 52 mΩsq^(-1).It is not only insensitive to a large degree of mechanical stretching(i.e.,350%electrical resistance change upon 570%elongation)but also immune to cyclic deformation(i.e.,5%electrical resistance increases after 330000 stretching cycles with 100%elongation).These key properties are far superior to those of the state-of-the-art reports.Its robustness and stability are verified under diverse circumstances,including long-term exposure to air(420 days),cyclic submersion(30000 times),and resilience against mechanical damages.The combination of conductivity,stretchability,and durability makes the NHSE a promising conductor/electrode solution for flexible/stretchable electronics for applications such as wearable on-body physiological signal detection,human-machine interaction,and heating e-skin.
基金supported by the National Natural Science Foundation of China(22162006,22102035)Natural Science Foundation of Guangxi Province(2019GXNSFGA245003,2021GXNSFBA220077).
文摘Lowering the cost while maintaining the highly catalytic performance is greatly beneficial for the development of commercial fuel cells and metal-air batteries.Compared with platinum,palladium holds a stronger oxygen affinity and high abundance on earth,endowing it a promising alternative to platinum in anion-exchange membrane fuel cells.However,the sluggish oxygen reduction reaction of palladium still remains a great issue and requires the design of stable and efficient palladium-based electrocatalysts.Here,we report the solvothermal/hydrothermal reduction method to prepare a series of PdAg_(x)nanowires.The prepared PdAg_(x)NWs exhibit hollow structure,which greatly improves the utilization of Pd atoms,offering an outstanding ORR performance.Specifically,PdAg_(2)NWs exhibit an onset potential of 0.92 V and mass activity of 350.7 mA mgPd^(-1)at 0.7 V vs.RHE for ORR in 0.1 M KOH solution.This work provides a novel approach for the construction of hollow NWs and their subsequent applications in other electrocatalytic reactions.