期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Targeting TRPA1 with liposome-encapsulated drugs anchored to microspheres for effective osteoarthritis treatment
1
作者 Yulin Chen Guangchao Wang +10 位作者 Fengjin Zhou Zhifeng Yin Fuming Shen Weizong Weng Hao Zhang Yingying Jiang Xinru Liu yonghui deng Yuan Chen Ke Xu Jiacan Su 《Chinese Chemical Letters》 2025年第5期387-393,共7页
Crucial for mediating inflammation and the perception of pain,the ion channel known as transient receptor potential ankyrin 1(TRPA1)holds significant importance.It contributes to the increased production of cytokines ... Crucial for mediating inflammation and the perception of pain,the ion channel known as transient receptor potential ankyrin 1(TRPA1)holds significant importance.It contributes to the increased production of cytokines in the inflammatory cells of cartilage affected by osteoarthritis and represents a promising target for the treatment of this condition.By leveraging the unique advantages of liposomes,a composite microsphere drug delivery system with stable structural properties and high adaptability can be developed,providing a new strategy for osteoarthritis(OA)drug therapy.The liposomes as drug reservoirs for TRPA1 inhibitors were loaded into hyaluronic acid methacrylate(HAMA)hydrogels to make hydrogel microspheres via microfluidic technology.An in vitro inflammatory chondrocyte model was established with interleukin-1β(IL-1β)to demonstrate HAMA@Lipo@HC’s capabilities.A destabilization of the medial meniscus(DMM)mouse model was also created to evaluate the efficacy of intra-articular injections for treating OA.HAMA@Lipo@HC has a uniform particle-size distribution and is injectable.The drug encapsulation rate was 64.29%±2.58%,with a sustained release period of 28 days.Inhibition of TRPA1 via HC-030031 effectively alleviated IL-1β-induced chondrocyte inflammation and matrix degradation.In DMM model OA mice,microspheres showed good long-term sustained drug release properties,improved joint inflammation microenvironment,reduced articular cartilage damage and decreased mechanical nociceptive threshold.This research pioneers the creation of a drug delivery system tailored for delivery into the joint cavity,focusing on TRPA1 as a therapeutic target for osteoarthritis.Additionally,it offers a cutting-edge drug delivery platform aimed at addressing diseases linked to inflammation. 展开更多
关键词 MICROSPHERE HAMA hydrogel LIPOSOME OSTEOARTHRITIS TRPA1
原文传递
Recent advance in synthesis and application of heteroatom zeolites 被引量:6
2
作者 Tingting Pang Xuanyu Yang +5 位作者 Chenyi Yuan Ahmed A.Elzatahry Abdulaziz Alghamdi Xing He Xiaowei Cheng yonghui deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第1期328-338,共11页
Incorporation of heteroatoms into the framewo rk of zeolites has become a significant strategy to improve their performance in catalysis and adsorption,because the obtained heteroatom zeolites exhibit quite different ... Incorporation of heteroatoms into the framewo rk of zeolites has become a significant strategy to improve their performance in catalysis and adsorption,because the obtained heteroatom zeolites exhibit quite different properties from the conventional aluminosilicate zeolites in aspects of surface acidity,pore structures,particle size and so on.In this review,the progress on the heteroatom zeolites including their synthesis and application is highlighted.First,the recent advance on the design and synthesis of different heteroatom zeolites is summarized.Special emphasis is placed on the introduction and comparison of three typical methods,including the direct synthesis,post synthesis and improved direct synthesis,for the traditional heteroatom zeolites(such as TS-1,Sn-MFI,Sn-β) and newly-reported heteroatom zeolites(such as W-MFI,Mo-MFI).According to their intrinsic characteristics,the application of heteroatom zeolites in diverse fields,such as production of fine chemicals,air pollution control and biomass conversion is then discussed.Finally,the challenges and perspective on the future development of heteroatom zeolites in low-cost preparation and practical application are proposed. 展开更多
关键词 Heteroatom zeolite Incorporation Tetrahedral coordination Research status SYNTHESIS Application PROSPECTIVE
原文传递
Recyclable Fenton-like catalyst based on zeolite Y supported ultrafine,highly-dispersed Fe_2O_3 nanoparticles for removal of organics under mild conditions 被引量:7
3
作者 Xuanyu Yang Xiaowei Cheng +3 位作者 Ahmed A.Elzatahry Jinyang Chen Abdulaziz Alghamdi yonghui deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第2期324-330,共7页
A versatile wet impregnation method was employed to conveniently and controllably deposit Fe_2O_3 nanoparticles on zeolites including commercial Y, mordenite and ZSM-5 with the similar framework Si/Al ratios and cryst... A versatile wet impregnation method was employed to conveniently and controllably deposit Fe_2O_3 nanoparticles on zeolites including commercial Y, mordenite and ZSM-5 with the similar framework Si/Al ratios and crystal sizes, respectively. The ultrafine Fe_2O_3 nanoparticles in size of 5 nm can be highly dispersed on zeolite Y matrix due to its much better wettability than ZSM-5 and mordenite. By using the obtained Fe_2O_3/zeolite composite as the heterogeneous Fenton-like catalysts, the degradation of phenol as a model reaction was systematically investigated, including the zeolite supports, particle size and dispersion of Fe_2O_3, and reaction conditions of H_2O_2 concentration, temperature, and pH value. The catalyst based on zeolite Y with Fe loading of 9% exhibited the best phenol degradation efficiency (> 90%)in neutral pH within 2 h. Its high catalytic activity in Fenton reaction can be attributed to the bifunctional properties of strong surface BrФnsted acidity and high reactivity of octahedral Fe^(3+) in the highlydispersed ultrafine Fe_2O_3 nanoparticles in size of 5 nm, which were the primary active centers to quickly decompose H_2O_2 into hydroxyl radicals. Since phenol degradation can be performed under mild conditions of ambient temperature (283-323 K) and a wide pH range (4.0-7.0), the catalysts can be easily recovered for recyclable use with stable degradation activity, which own the immense potential in deep treatment of organic pollutants in industrial wastewater. 展开更多
关键词 FENTON-LIKE reaction Zeolite Fe2O3 NANOPARTICLES Highly-dispersed Phenol degradation
原文传递
Controllable synthesis of highly crystallized mesoporous TiO2/WO3 heterojunctions for acetone gas sensing 被引量:6
4
作者 Changyao Wang Yuhui Li +7 位作者 Pengpeng Qiu Linlin Duan Wei Bi Yan Chen Dingyi Guo Yupu Liu Wei Luo yonghui deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第5期1119-1123,共5页
Mesoporous semiconducting metal oxides(SMOs)heterojunctions are appealing sensors for gas detecting.However,due to the different hydrolysis and condensation mechanism of every metal precursor and the contradiction bet... Mesoporous semiconducting metal oxides(SMOs)heterojunctions are appealing sensors for gas detecting.However,due to the different hydrolysis and condensation mechanism of every metal precursor and the contradiction between high crystallinity and high surface area,the synthesis of mesoporous SMOs heterojunctions with highly o rdered mesostructures,highly crystallized frameworks,and high surface area remains a huge challenge.In this work,we develop a novel"acid-base pair"adjusted solvent evaporation induced self-assembly(EISA)strategy to prepare highly crystallized ordered mesoporous TiO2/WO3(OM-TiO2/WO3)heterojunctions.The WCl6 and titanium isopropoxide(TIPO)are used as the precursors,respectively,which function as the"acid-base pair",enabling the coassembly with the structure directing agent(PEO-b-PS)into highly ordered meso structures.In addition,PEO-b-PS can be converted to rigid carbon which can protect the meso structures from collapse during the crystallization process.The resultant OM-TiO2/WO3 heterojunctions possess primitive cubic mesostructures,large pore size(~21.1 nm),highly crystalline frameworks and surface area(~98 m2/g).As a sensor for acetone,the obtained OM-TiO2/WO3 show excellent re sponse/recovery perfo rmance(3 s/5 s),good linear dependence,repeatability,selectivity,and long-term stability(35 days). 展开更多
关键词 Mesoporous materials Acetone gas sensing HETEROJUNCTIONS TiO2 WO3
原文传递
High performance lithium-sulfur batteries by facilely coating a conductive carbon nanotube or graphene layer 被引量:2
5
作者 Yuchi Yang Chen Chen +3 位作者 Jianhua Hu yonghui deng Yi Zhang Dong Yang 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第12期1777-1780,共4页
Lithium sulfur(Li-S) batteries are regarded as promising candidates for next-generation rechargeable batteries. However, the insulation characteristic of sulfur and severe polysulfide dissolution hindered their develo... Lithium sulfur(Li-S) batteries are regarded as promising candidates for next-generation rechargeable batteries. However, the insulation characteristic of sulfur and severe polysulfide dissolution hindered their development. We presented a facile approach to fabricate Li-S batteries by coating commercial carbon nanotube or graphene slurries on normal sulfur cathode electrode to construct a dual-layer cathode electrode. The conductive CNT or graphene layer could not only improve the conductivity of sulfur cathode, but also suppress the polysulfide diffusion. The CNT@S cathode delivered a high reversible capacity of 740 mAh/g over 300 cycles at 1 C and 870 mAh/g over 100 cycles at 0.2 C. Furthermore, this strategy could be realized on the commercial product line of lithium-ion batteries, which made it possible to large-scale produce Li-S batteries. 展开更多
关键词 Lithium sulfur batteries Conductive coatings Carbon nanotube GRAPHENE Electrochemical performance
原文传递
Rational construction of self-assembly azobenzene derivative monolayers with photoswitchable surface properties 被引量:2
6
作者 Yu Zhang Peng Gao +2 位作者 Qin Yue Peter Trefonas yonghui deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第11期1661-1665,共5页
Photo-responsive azobenzene (ABZ) derivatives with different end groups (R) as photoswitchable molecules were employed to construct self-assembled monolayers (SAMs) on silicon substrate by using 3-glycidoxypropy... Photo-responsive azobenzene (ABZ) derivatives with different end groups (R) as photoswitchable molecules were employed to construct self-assembled monolayers (SAMs) on silicon substrate by using 3-glycidoxypropyltrimethoxysilane (GPTS) as the bridging molecules. The assembly process was optimized by changing various parameters, including the type and concentration of ABZ derivatives, reaction time, etc. The obtained SAMs were fully characterized and evaluated using UV spectroscopy, atomic force microscope (AFM), elllipsometer, static contact angle and X-ray photoelectron spectroscopy (XPS). It is found that the end group property of azobenzene derivatives is critical to the obtained SAMs' photoresponsive properties. Compared with hydrophobic compounds (4-(4'-aminophenylazo) benzoic acid, ABZ-CF3), the hydrophilic compounds (4-(4'-aminophenylazo) benzoic acid, ABZ-COOH) show excellent reversible photoswitching performance with a large contact angle change of 35° under oDtimized process, and the SAMs are removable bv thermal treatment at 240 ℃ in air for onlv 5 min. 展开更多
关键词 SELF-ASSEMBLY MONOLAYER AZOBENZENE PHOTOSWITCH Surface treatment
原文传递
Sulfonic acid-functionalized core-shell Fe_(3)O_(4)@carbon microspheres as magnetically recyclable solid acid catalysts 被引量:3
7
作者 Chenyi Yuan Xiqing Wang +4 位作者 Xuanyu Yang Abdulaziz AAlghamdi Fahad AAlharthi Xiaowei Cheng yonghui deng 《Chinese Chemical Letters》 CSCD 2021年第6期2079-2085,共7页
Green and recyclable solid acid catalysts are in urgent demand as a substitute for conventional liquid mineral acids.In this work,a series of novel sulfonic acid-functionalized core-shell Fe_(3)O_(4)@carbon microspher... Green and recyclable solid acid catalysts are in urgent demand as a substitute for conventional liquid mineral acids.In this work,a series of novel sulfonic acid-functionalized core-shell Fe_(3)O_(4)@carbon microspheres(Fe_(3)O_(4)@C-SO_(3)H)have been designed and synthesized as an efficient and recyclable heterogeneous acid catalyst.For the synthesis,core-shell Fe_(3)O_(4)@RF(resorcinol-formaldehyde)microspheres with tunable shell thickness were achieved by interfacial polymerization on magnetic Fe_(3)O_(4)microspheres.After high-temperature carbonization,the microspheres were eventually treated by surface sulfonation,re sulting in Fe_(3)O_(4)@C-x-SO_(3)H(x stands for carbonization temperature)microspheres with abundant surface SO_(3)H groups.The obtained microspheres possess uniform core-shell structure,partially-graphitized carbon skeletons,superparamagnetic property,high magnetization saturation value of 10.6 emu/g,and rich SO_(3)H groups.The surface acid amounts can be adju sted in the range of 0.59-1.04 mmol/g via sulfonation treatment of carbon shells with different graphitization degrees.The magnetic Fe_(3)O_(4)@C-x-SO_(3)H microspheres were utilized as a solid acid catalyst for the acetalization reaction between benzaldehyde and ethylene glycol,demonstrating high selectivity(97%)to benzaldehyde ethylene glycol acetal.More importantly,by applying an external magnetic field,the catalysts can be easily separated from the heterogeneous reaction solutions,which later show well preserved catalytic activity even after 9 cycles,revealing good recyclability and high stability. 展开更多
关键词 CORE-SHELL Fe_(3)O_(4)@carbon Interfacial polymerization Magnetic microspheres RECYCLABILITY Solid acid catalyst Sulfonic acid-functionalization
原文传递
Ordered porous metal oxide semiconductors for gas sensing 被引量:6
8
作者 Xinran Zhou Xiaowei Cheng +4 位作者 Yongheng Zhu Ahmed A. Elzatahry Abdulaziz Alghamdi yonghui deng Dongyuan Zhao 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第3期405-416,共12页
Among various gas sensing materials, metal oxide semiconductors have shown great potential as resistive type sensors. The ordered porous structural metal oxide semiconductors with well-defined meso- or macro-pores che... Among various gas sensing materials, metal oxide semiconductors have shown great potential as resistive type sensors. The ordered porous structural metal oxide semiconductors with well-defined meso- or macro-pores chemically synthesized via soft-templating method and nanocasting strategy have high porosity, highly interconnected pore channels and high surface area with enormous active sites for interacting with gaseous molecules. These features enable them good performance in gas sensing, including high sensitivity, fast response and recovery, good selectivity. This review gives a comprehensive summary about the porous metal oxides with focus on the synthesis methods, structure related properties, as well as the modification strategies for gas sensing improved performances. 展开更多
关键词 Porous materials Metal oxides Templating-synthesis Gas sensing
原文传递
Ultra-thin CoAl layered double hydroxide nanosheets for the construction of highly sensitive and selective QCM humidity sensor 被引量:1
9
作者 Yongheng Zhu Xuhua Dong +8 位作者 Jinsheng Cheng Lumin Wang Cheng Zhao yonghui deng Siqi Xie Yingjie Pan Yong Zhao Gengzhi Sun Tianjun Ni 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期376-381,共6页
To achieve real-time monitoring of humidity in various applications,we prepared facile and ultra-thin CoAl layered double hydroxide(CoAl LDH)nanosheets to engineer quartz crystal microbalances(QCM).The characteristics... To achieve real-time monitoring of humidity in various applications,we prepared facile and ultra-thin CoAl layered double hydroxide(CoAl LDH)nanosheets to engineer quartz crystal microbalances(QCM).The characteristics of CoAl LDH were investigated by transmission electron microscopy(TEM),X-ray diffraction(XRD),X-ray photoelectric spectroscopy(XPS),Brunauer–Emmett–Telle(BET),atomic force microscopy(AFM)and zeta potential.Due to their large specific surface area and abundant hydroxyl groups,CoAl LDH nanosheets exhibit good humidity sensing performance.In a range of 11.3%and 97.6%relative humidity(RH),the sensor behaved an ultrahigh sensitivity(127.8 Hz/%RH),fast response(9.1 s)and recovery time(3.1 s),low hysteresis(3.1%RH),good linearity(R^(2)=0.9993),stability and selectivity.Besides,the sensor can recover the initial response frequency after being wetted by deionized water,revealing superior self-recovery ability under high humidity.Based on in-situ Fourier transform infrared spectroscopy(FT-IR),the adsorption mechanism of CoAl LDH toward water molecules was explored.The QCM sensor can distinguish different respiratory states of people and wetting degree of fingers,as well as monitor the humidity in vegetable packaging,suggesting excellent properties and a promising application in humidity sensing. 展开更多
关键词 Layered double hydroxide nanosheets Quartz crystal microbalance Humidity sensor Respiratory monitoring Sensing mechanism
原文传递
Hydrothermal synthesis of hierarchical SnO_(2)nanomaterials for high-efficiency detection of pesticide residue 被引量:1
10
作者 Haijie Cai Xiaopeng Qiao +7 位作者 Meilian Chen Dongsheng Feng Abdulaziz AAlghamdi Fahad A.Alharthi Yingjie Pan Yong Zhao Yongheng Zhu yonghui deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第4期1502-1506,共5页
Acephate pesticide contamination in agricultural production has caused serious human health problems.Metal oxide semiconductor(MOS)gas sensor can be used as a portable and promising alternative tool for efficiently de... Acephate pesticide contamination in agricultural production has caused serious human health problems.Metal oxide semiconductor(MOS)gas sensor can be used as a portable and promising alternative tool for efficiently detection of acephate.In this study,hierarchical assembled SnO_(2)nanosphere,SnO_(2)hollow nanosphere and SnO_2 nanoflower were synthesized respectively as high efficiency sensing materials to build rapid and selective acephate pesticide residues sensors.The morphologies of different SnO_(2)3 D nanostructures were characterized by various material characterization technology.The sensitive performance test results of the 3 D SnO_(2)nanomaterials towards acephate show that hollow nanosphere SnO_(2)based sensor displayed preferable sensitivity,selectivity,and rapid response(9 s)properties toward acephate at the optimal working temperature(300℃).This SnO_(2)hollow nanosphere based gas sensor represents a useful tool for simple and highly effective monitoring of acephate pesticide residues in food and environment.According to the characterization results,particularly Brunauer-Emmett-Teller(BET)and Ultraviolet-Visible Spectroscopy(UV-vis),the obvious and fast response can be attributed to the mesoporous hollow nanosphere structure and appropriate band gap of SnO_2 hollow nanosphere. 展开更多
关键词 SnO_(2)nanomaterials Hollow nanostructures Hydrothermal methods Acephate gas sensor High-efficiency detection
原文传递
Stepwise construction of Pt decorated oxygen-deficient mesoporous titania microspheres with core-shell structure and magnetic separability for efficient visible-light photocatalysis 被引量:1
11
作者 Zhijian Li Yao Wang +5 位作者 Ahmed A.Elzatahry Xuanyu Yang Shouzhi Pu Wei Luo Xiaowei Cheng yonghui deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第6期1598-1602,共5页
Solid photocatalysts with high specific surface area,superior photoactivity and ease of recycling are highly desired in chemical process,water treatment and so on.In this study,a facile stepwise sol-gel coating approa... Solid photocatalysts with high specific surface area,superior photoactivity and ease of recycling are highly desired in chemical process,water treatment and so on.In this study,a facile stepwise sol-gel coating approach was utilized to synthesize Pt decorated oxygen-deficient mesoporous titania microspheres with core-shell structure and convenient magnetic separability(denoted as Fe3 O4@-SiO2@Pt/mTiO2-x).These photocatalysts consist of magnetic Fe3 O4 cores,nonporous insulating SiO2 middle layer and mesoporous anatase TiO2-x shell decorated by Pt nanoparticles(~3.5 nm)through wet impregnation and H2 reduction.As a result of high activity of oxygen-deficiency of black TiO2-x by H2 reduction and efficient inhibition of electron-hole recombination by Pt nanoparticles,the rationally designed core-shell Fe3 O4@SiO2@Pt/mTiO2-x photocatalysts exhibit superior photocatalytic performance in rhodamine B(RhB)degradation under visible light irradiation,with more than 98%of RhB degraded within 50 min.These core-shell structured photocatalysts show excellent recyclability under the assistance of magnetic separation with well-retained photocatalytic performance even after running five cycles.This stepwise synthesis method paves the way for the rational design of a high-efficiency recyclable heterogeneous catalyst,including photocatalysts,for various applications. 展开更多
关键词 CORE-SHELL Mesoporous TiO2 Photocatalytic activity Magnetic recovery Visible light
原文传递
A novel strategy for boosting the photoluminescence quantum efficiency of CdSe nanocrystals at room temperature 被引量:1
12
作者 Biwei Wang Limin Liu +2 位作者 Yi Zhang yonghui deng Angang Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第1期295-298,共4页
Highly luminescent colloidal nanocrystals have wide applications in bioimaging and various optoelectronic devices.Herein we report a facile and mild procedure by combining S2-treatment and binary ligand passivation,wh... Highly luminescent colloidal nanocrystals have wide applications in bioimaging and various optoelectronic devices.Herein we report a facile and mild procedure by combining S2-treatment and binary ligand passivation,which can efficiently enhance the luminescent property of CdSe nanocrystals at room temperature.The photoluminescence quantum yield of as-treated CdSe nanocrystals exhibits drastic enhancement(e.g.,188 times for CdSe nanorods)after this dual-passivation treatment.The methodology proposed here can be applied to various CdSe nanocrystals,regardless of their sizes,shapes,and crystal structures. 展开更多
关键词 PHOTOLUMINESCENCE CdSe nanocrystals Sulfur ions Surface passivation Room temperature
原文传递
A facile construction of heterostructured ZnO/Co_(3)O_(4) mesoporous spheres and superior acetone sensing performance 被引量:1
13
作者 Mengli Lei Xinran Zhou +5 位作者 Yidong Zou Junhao Ma Fahad AAlharthi Abdulaziz Alghamdi Xuanyu Yang yonghui deng 《Chinese Chemical Letters》 CSCD 2021年第6期1998-2004,共7页
The rapid development of internet and internet of things brings new opportunities for the expansion of intelligent sensors,and acetone as a major disease detection indicator(i.e.,diabetes)making it become extremely im... The rapid development of internet and internet of things brings new opportunities for the expansion of intelligent sensors,and acetone as a major disease detection indicator(i.e.,diabetes)making it become extremely important clinical indicator.Herein,uniform mesoporous ZnO spheres were successfully synthesized via novel formaldehyde-assisted metal-ligand crosslinking strategy.In order to adjust the pore structure of mesoporous ZnO,various mesoporous ZnO spheres were synthesized by changing weight percentage of Zn(NO_(3))_(2)·6 H_(2)O to tannic acid(TA).Moreover,highly active heterojunction mesoporous ZnO/Co_(3)O_(4)has been fabricated based on as-prepared ultra-small Co_(3)O_(4)nanocrystals(ca.3 nm)and mesoporous ZnO spheres by flexible impregnation technique.Profit from nano-size effect and synergistic effect of p-n heterojunction,mesoporous ZnO/Co_(3)O_(4)exhibited excellent acetone sensing performance with high selectivity,superior sensitivity and responsiveness.Typically,5 wt%Co_(3)O_(4)embedded mesoporous ZnO sphere showed prominent acetone response(ca.46 for 50 ppm),which was about 11.5 times higher than that in pure ZnO sensing device,and it was also endowed high cyclic stability.The nanocrystals embedded hybrid material is expected to be used as promising efficient material in the field of catalysis and gas sensing. 展开更多
关键词 Mesoporous materials P-N heterojunction Nanocrystal Nano-size effect Gas sensing
原文传递
Porous 2D CuO nanosheets for efficient triethylamine detection at low temperature
14
作者 Feng Wang Haoran Zhong +4 位作者 Zhenlu Chen Ding Wang Zhuangchai Lai yonghui deng Xianying Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第2期588-592,共5页
The freshness of seafood can be judged by detecting the concentration of triethylamine(TEA). In this work, 2D Cu O porous nanosheets(Cu O PNs) were prepared by a graphene oxide template method and their particle sizes... The freshness of seafood can be judged by detecting the concentration of triethylamine(TEA). In this work, 2D Cu O porous nanosheets(Cu O PNs) were prepared by a graphene oxide template method and their particle sizes were regulated by changing the calcination temperature. Their structure, morphology and gas sensing performances were investigated by various characterization methods. The response(Rg/Ra) of the gas sensor based on Cu O PNs calcined at 700oC was as high as 440-100 ppm TEA at the operating temperature of 40 ℃. The detection limit was as low as 0.25 ppm. In addition, the gas sensor has good selectivity and stability. The excellent TEA sensitivity is mainly resulted from the appropriate particle size and loose porous framework. This work not only paves the way to explore the novel low temperature TEA gas sensors, but also provides deep insight on improving the structure and properties of gas sensitive materials by controlling the calcination temperature. 展开更多
关键词 CuO nanosheets Gas sensor Porous materials Triethylamine detection Low operating temperature
原文传递
Induction heating enables efficient heterogeneous catalytic reactions over superparamagnetic nanocatalysts
15
作者 Chao Huang Yu Wang +3 位作者 Rui Zhong Zhenkun Sun yonghui deng Lunbo Duan 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第9期329-334,共6页
Most catalytic processes are achieved by heating the whole reaction systems including the entire reactor,substrate and solvent,which leads to energy loss and obvious heat transfer limits.In this study,induction heatin... Most catalytic processes are achieved by heating the whole reaction systems including the entire reactor,substrate and solvent,which leads to energy loss and obvious heat transfer limits.In this study,induction heating was employed to boost the catalytic Suzuki-Miyaura cross-coupling reactions by using conductive superparamagnetic microspheres with loaded Pd nanoparticles as heterogeneous catalysts.It was found that,at the same apparent reaction temperatures,the reactions by adopting the induction heating all exhibit better catalytic performance with higher conversion and yield,as compared to the reactions using conventional joule heating.The improvement is mainly attributed to the localized heating effect endowed by high efficiency of the heat transfer from the heat source to catalytic sites,which dissipates the electromagnetic energy through Néel relaxation mechanism.Moreover,it has be found that the reactions have been largely accelerated,resulting in much shorter reaction time required to approach a given value of reactant conversion.These results indicate that the unique heating method based on the superparamagnetic nanomaterials as both the inductive component and catalyst support holds a promising application for fast and efficient heterogeneous catalytic process,and exhibits potential for improving energy transfer efficiency and reducing the side reactions attributed to the uneven temperature profile. 展开更多
关键词 Induction heating Magnetic particles Cross-coupling reaction Heterogeneous catalysis CORE-SHELL
原文传递
Facile synthesis of metal-polyphenol-formaldehyde coordination polymer colloidal nanoparticles with sub-50 nm for T_(1)-weighted magnetic resonance imaging
16
作者 Jing Qin Guohai Liang +7 位作者 Bingxi Feng Gen Wang Na Wu yonghui deng Ahmed AElzatahry Abdulaziz Alghamdi Yongxi Zhao Jing Wei 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第2期842-848,共7页
Plant polyphenol-based coordination polymers(CPs) with ultra-small particle size and tailorable compositions are highly desired in biomedical applicatio ns,but their synthesis is still challenging due to the sophistic... Plant polyphenol-based coordination polymers(CPs) with ultra-small particle size and tailorable compositions are highly desired in biomedical applicatio ns,but their synthesis is still challenging due to the sophisticated coordination assembly process and unavoidable self-oxidation polymerization of polyphenol. He rein,a general ligand covalent-modification mediated coordination assembly strategy is proposed for the synthesis of water-dispersible CPs with tunable metal species(e.g., Gd,Cu,Ni,Zn,Fe)and ultra-small diameter(8.6-37.8 nm) using nontoxic plant polyphenol(e.g..tannic acid,gallic acid) as a polymerizable ligand.Polyphenol molecules react with formaldehyde firstly,which can effectively retard the oxidation induced self-polymerization of polyphenol and lead to the formation of metal ions containing CPs colloidal nanoparticles.These ultrafine nanoparticles with stably chelated metal io ns are highly water dispersible and thus advantageous for bioimaging.As an example,ultra-small Gd contained CPs exhibit higher longitudinal relaxivity(r_(1)=25.5 L mmol^(-1) s^(-1)) value with low r2/r1(1.19) than clinically used Magnevist(Gd-DTPA,r1=3.7 L mmol^(-1) s^(-1)) .Due to the enhanced permeability and retention effect,they can be further used as a positive contrast agent for T1-weighted MR imaging of tumour. 展开更多
关键词 Coordination polymer NANOPARTICLE SELF-ASSEMBLY Plant polyphenol Contrast agent
原文传递
Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance
17
作者 Dong Cheng Youyou Feng +6 位作者 Bingxi Feng Ke Wang Guoxin Song Gen Wang Xiaoli Cheng yonghui deng Jing Wei 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第5期493-498,共6页
In persulfate-based advanced oxidation process(PS-AOPs),fixing nanosized metal oxide on processable substrates is highly desirable to avoid the aggregation and loss of nanocatalysts during the practical application.Ho... In persulfate-based advanced oxidation process(PS-AOPs),fixing nanosized metal oxide on processable substrates is highly desirable to avoid the aggregation and loss of nanocatalysts during the practical application.However,it is still challenging to develop a versatile strategy for the deposition of metal oxide nanocatalysts on various substrates with different physicochemical properties.Herein,polyphenols are utilized as a“molecular glue”and reductant to mediate the interfacial deposition of MnO_(2) nanocatalysts on different substrates.MnO_(2) nanocatalysts were in-situ grown on macroscope mineral substrates(e.g.,airstone)via an interfacial redox strategy between tannic acid(TA)and oxidized KMnO4,and then employed as a fixed catalyst of peroxymonosulfate(PMS)activation for treating pharmaceutical and personal care products(PPCPs)in water.The fixed MnO_(2) exhibited superior catalytic performance toward different PPCPS via a singlet oxygen(^(1)O_(2))-dominated nonradical oxidation pathway.PPCPs in the secondary effluent of wastewater treatment plants could be effectively removed by a fixed-bed column of the fixed MnO_(2) with long term stability.Redox cycle of Mn^(4+)/Mn^(3+)and surface hydroxyl group of the fixed MnO_(2) was proved to be responsible for the activation of PMS.This work provides a new avenue for developing fixed metal oxides for sustainable water treatment. 展开更多
关键词 Redox strategy Manganese oxides Fixed catalyst PEROXYMONOSULFATE PPCPS
原文传递
In situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series
18
作者 Yu deng Yan Liu +3 位作者 yonghui deng Jinsheng Cheng Yidong Zou Wei Luo 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期502-507,共6页
Benzene series as highly toxic gases have inevitably entered human life and produce great threat to human health and ecological environment,and thus it is distinctly meaningful to monitor benzene series with quickly,r... Benzene series as highly toxic gases have inevitably entered human life and produce great threat to human health and ecological environment,and thus it is distinctly meaningful to monitor benzene series with quickly,real-time and efficient technique.Herein,novel sulfur-doped mesoporous WO_(3)materials were synthesized via classical in-situ solvent evaporation induced co-assembly strategy combined with doping engineering,which possessed highly crystallized frameworks,high specific surface area(40.9–63.8 m^(2)/g)and uniform pore size(~18 nm).Benefitting from abundant oxygen vacancy and defects via S-doping,the tailored mesoporous S/m WO_(3)exhibited excellent benzene sensing performance,including high sensitivity(50 ppm vs.48),low detection limit(ca.500 ppb),outstanding selectivity and favorable stability.In addition,the reduction of band gap resulted from S-doping promotes the carrier migration in the sensing materials and the reaction at the gas–solid sensing interfaces.It provides brand-new approach to design sensitive materials with multiple reaction sites. 展开更多
关键词 Mesoporous materials Benzene series Tungsten oxides Sulfur doping Gas sensor
原文传递
Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing
19
作者 Jichun Li Zhengren Wang +4 位作者 Yu deng Hongxiu Yu yonghui deng Xiaowei Cheng Kaiping Yuan 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第11期492-498,共7页
As a key biomarker for noninvasive diagnosis of diabetes,the selective detection of trace acetone in exhaled gas using a portable and low-cost device remains a great challenge.Semiconductor metal oxide(SMO)based gas s... As a key biomarker for noninvasive diagnosis of diabetes,the selective detection of trace acetone in exhaled gas using a portable and low-cost device remains a great challenge.Semiconductor metal oxide(SMO)based gas sensors have drawn signification attention due to their potential in miniaturization,user-friendliness,high cost-effectiveness and selective real-time detection for noninvasive clinical diagnosis.Herein,we propose a one-pot solvent evaporation induced tricomponent co-assembly strategy to design a novel ordered mesoporous SMO of silica-implanted WO_(3)(Si O_(2)/WO_(3))as sensing materials for trace acetone detection.The controlled co-assembly of silicon and tungsten precursors and amphiphilic diblock copolymer poly(ethylene oxide)-block-polystyrene(PEO-b-PS),and the subsequent thermal treatment enable the local lattice disorder of WO_(3)induced by the amorphous silica and the formation of ordered mesoporous Si O_(2)/WO_(3)hybrid walls with a unique metastableε-phase WO_(3)framework.The obtained mesoporous SiO_(2)/WO_(3)composites possess highly crystalline framework with large uniform pore size(12.0-13.3 nm),high surface area(99-113 m^(2)/g)and pore volume(0.17-0.23 cm^(3)/g).Typically,the asfabricated gas sensor based on mesoporous 2.5%Si O_(2)/WO_(3)exhibits rapid response/recovery rate(5/17 s),superior sensitivity(R_(air)/R_(gas)=105 for 50 ppm acetone),as well as high selectivity towards acetone.The limit of detection is as low as 0.25 ppm,which is considerably lower than the thresh value of acetone concentration(>1.1 ppm)in the exhaled breath of diabetic patients,demonstrating its great prospect in real-time monitoring in diabetes diagnosis.Moreover,the mesoporous 2.5%Si O_(2)/WO_(3)sensor is integrated into a wireless sensing module connected to a smart phone,providing a convenient real-time detection of acetone. 展开更多
关键词 Mesoporous materials ε-Tungsten oxide Silica-implanted Acetone sensing Real-time detection
原文传递
Amphiphilic block copolymers directed synthesis of mesoporous nickel-based oxides with bimodal mesopores and nanocrystal-assembled walls
20
作者 Yuan Ren Xuanyu Yang +4 位作者 Xinran Zhou Wei Luo Yi Zhang Xiaowei Cheng yonghui deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第12期2003-2008,共6页
Mesoporous late-transition metal oxides have great potential in applications of energy,catalysis and chemical sensing due to their unique physical and chemical properties.However,their synthesis via the flexible and s... Mesoporous late-transition metal oxides have great potential in applications of energy,catalysis and chemical sensing due to their unique physical and chemical properties.However,their synthesis via the flexible and scalable soft-template method remain a great challenge,due to the weak organic-inorganic interaction between the frequently used surfactants(e.g.,Pluronic-type block copolymers) and metal oxide precursors,and the low crystallization temperature of metal oxides.In this study,ordered mesoporous NiO with dual mesopores,high surface area and well-interconnected crystalline porous frameworks have been successfully synthesized via the facile solvent evaporation-induced co-assembly(EICA) method,by using lab-made amphiphilic diblock copolymer polystyrene-b-poly(4-vinylpyridine)(PS-b-P4 VP) as both the structure-directing agent(the soft template) and macromolecular chelating agents for nickel species,THF as the solvent,and nickel acetylacetonate(Ni(acac)2) as inorganic precursor.Similarly,by using Ni(acac)2 and Fe(acac)3 as the binary precursors,ordered mesoporous Fedoped NiO materials can be obtained,which have bimodal mesopores of large mesopores(32.5 nm) and secondary mesopores(4.0-11.5 nm) in the nanocrystal-assembled walls,high specific surface areas(~74.8 m^2/g) and large pore value(~0.167 cm^3/g).The obtained mesoporous Fe-doped NiO based gas sensor showed superior ethanol sensing performances with good sensitivity,high selectivity and fast response-recovery dynamics. 展开更多
关键词 Block copolymer Co-assembly Metal oxides MESOPOROUS Gas sensing
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部