期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Self-Locking Stability Effect Induced by Downwash Flow of the Flapping Wing Rotor
1
作者 Si Chen Lihua Yuan +7 位作者 Jiawei Xiang Yuanyuan He Peng Zhang Yuanhao Cheng yinjun pan Shijun Guo Ye Xie Juan Wang 《Journal of Bionic Engineering》 2025年第5期2429-2443,共15页
Throughout the previous studies,none of them are involved in analysing the downwash flow effect on the control surface of the Flapping Wing Rotor(FWR).An overset CFD numerical model is built up and validated to study ... Throughout the previous studies,none of them are involved in analysing the downwash flow effect on the control surface of the Flapping Wing Rotor(FWR).An overset CFD numerical model is built up and validated to study the downwash flow’s effect on the stability of the FWR.After simulation,a cone like self-lock region which acts as the critical condition determining the stability of FWR is found.Only when the flow’s resultant velocity acting on the control surface lies in the stable region,the FWR can keep stable.The size of the cone like self-lock stable region can be enlarged by increasing the maximum feasible deflection angle constrained by mechanical design or enhancing the equivalent downwash flow velocity.Among all the simulated cases,when J=2.67(f=5 Hz,■=5 r/s),the largest average equivalent downwash flow velocities are found.On the other hand,the recovery torque could be enhanced due to the increase of the arm of the lateral force.According to these simulation results,a 43 g FWR model with two control surfaces and two stabilizers is then designed.A series of flight tests is then conducted to help confirm the conclusion of the mechanism research in this work.Overall,this study points out several strategies to increase the flight stability of the FWR and finally realizes the stable climb flight and mild descent flight of the FWR. 展开更多
关键词 Flapping wing rotor Downwash flow Self-lock stable region
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部