Perovskite solar cells(PSCs)based onα-phase FAPbI_(3)(α-FAPbI_(3))microcrystals precursor outperform those withδ-phase mi-crocrystals due to their superior crystallinity and fewer defects,makingα-phase microcrysta...Perovskite solar cells(PSCs)based onα-phase FAPbI_(3)(α-FAPbI_(3))microcrystals precursor outperform those withδ-phase mi-crocrystals due to their superior crystallinity and fewer defects,makingα-phase microcrystals precursor more advantageous for high-per-formance PSCs.However,most reported synthesis methods of perovskite microcrystals,especially for aqueous synthesis,fail to reach the energy threshold required forα-phase transformation and therefore exhibit theδphase.In this study,we introduce a novel aqueous syn-thesis method to fabricateα-FAPbI_(3) microcrystals.Our approach overcomes the energy barrier by properly heating the reaction system,enabling the direct formation ofα-FAPbI_(3) in water.This direct one-step aqueous synthesis route yieldsα-FAPbI_(3) microcrystals with su-perior phase purity,crystallinity,and minimal defect density.Combined with green anti-solvent,the high-qualityα-FAPbI_(3) microcrystals serving as exceptional precursors endow perovskite films with reduced nonradiative recombination.The PSC achieves a remarkable power conversion efficiency(PCE)of 24.43%,which is one of the highest PCE reports for using the green anti-solvent in ambient air condition.This aqueous synthesis approach shows a significant potential for scalable production of high-performance PSCs.展开更多
In perovskite solar cells(PSCs)with a wide bandgap(E_(g)≥1.65 eV),mixed halides generate poor-quality perovskite films and lead to a low power conversion efficiency(PCE)due to uncontrolled fast perovskite crystalliza...In perovskite solar cells(PSCs)with a wide bandgap(E_(g)≥1.65 eV),mixed halides generate poor-quality perovskite films and lead to a low power conversion efficiency(PCE)due to uncontrolled fast perovskite crystallization.Herein,we propose a strategy to regulate the grain growth of perovskite wet films by fumigating them in a dimethyl sulfoxide(DMSO)atmosphere.Due to the better coordination of DMSO with lead halides and organic halides,DMso fumigation effectively prolongs the existence time of intermediate phases,which slows the crystallization of perovskites,generating perovskite flms with large grains and a low defect density.Such high-quality perovskite flms were used to fabricate 1.65-evand 1.68-eV-bandgap PSCs,which achieved champion PCEs of 23.19%and 22.38%,respectively.The former PsC showed a V_(oc)deficit of o.391 V,representing one of the state-of-the-art performances for this bandgap.Monolithic perovskite/tunnelling oxide passivating contact(TOPCon)tandem solar cells(TSCs)were also fabricated using the optimized PSCs as front cells,achieving a champion PCE of 30.9%(certified 30.83%).This study demonstrates an easy-to-operate and effective approach to realize highperformance wide-bandgap PSCs and perovskite/TOPCon TSCs.展开更多
Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)thin films are attractive due to environmental-friendly and earth-abundant constituents,and superior optoelectronic properties such as high absorption coeffi-cient and tunable ban...Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)thin films are attractive due to environmental-friendly and earth-abundant constituents,and superior optoelectronic properties such as high absorption coeffi-cient and tunable bandgaps(1.0-1.5 eV).In the past several years,profound progress has been made in CZTSSe via addressing the issues of massive deep defects[1,2],severe band tailing[3],uncon-trollable grain growth[4,5].and unoptimized interfaces[6,7].展开更多
Large bone defect repair requires biomaterials that promote angiogenesis and osteogenesis.In present work,a nanoclay(Laponite,XLS)-functionalized 3D bioglass(BG)scaffold with hypoxia mimicking property was prepared by...Large bone defect repair requires biomaterials that promote angiogenesis and osteogenesis.In present work,a nanoclay(Laponite,XLS)-functionalized 3D bioglass(BG)scaffold with hypoxia mimicking property was prepared by foam replication coupled with UV photopolymerization methods.Our data revealed that the incorporation of XLS can significantly promote the mechanical property of the scaffold and the osteogenic differentiation of human adipose mesenchymal stem cells(ADSCs)compared to the properties of the neat BG scaffold.Desferoxamine,a hypoxia mimicking agent,encourages bone regeneration via activating hypoxia-inducible factor-1 alpha(HIF-1α)-mediated angiogenesis.GelMA-DFO immobilization onto BG-XLS scaffold achieved sustained DFO release and inhibited DFO degradation.Furthermore,in vitro data demonstrated increased HIF-1αand vascular endothelial growth factor(VEGF)expressions on human adipose mesenchymal stem cells(ADSCs).Moreover,BG-XLS/GelMA-DFO scaffolds also significantly promoted the osteogenic differentiation of ADSCs.Most importantly,our in vivo data indicated BG-XLS/GelMA-DFO scaffolds strongly increased bone healing in a critical-sized mouse cranial bone defect model.Therefore,we developed a novel BG-XLS/GelMA-DFO scaffold which can not only induce the expression of VEGF,but also promote osteogenic differentiation of ADSCs to promote endogenous bone regeneration.展开更多
Kesterite Cu2ZnSn(S,Se)4(CZTSSe)is one of the most promising next-generation thin-film photovoltaic materials due to its environmental friendliness and earthabundant constitutions,excellent optoelectronic properties(h...Kesterite Cu2ZnSn(S,Se)4(CZTSSe)is one of the most promising next-generation thin-film photovoltaic materials due to its environmental friendliness and earthabundant constitutions,excellent optoelectronic properties(high absorption coefficient>104/cm and tunable band gap 1.0–1.5 eV)and high theoretical efficiency(32%).1,2 In 2014,12.6%3 efficiency was achieved by the IBM group using the hydrazine method.Based on the sputtering process,12.62%4 efficiency for CZTSSe and 12.5%5 efficiency for CZTSe have been achieved in recent years.However,the highest efficiency has stuck around 12.6%for several years.Lately,a breakthrough with certified 13%power conversion efficiency(PCE)has been demonstrated for CZTSSe thin-film solar cells,surpassing the dust-covered efficiency record since 2014.3,6 Along with the efficiency advancement of kesterite solar cells,a cost-effective fabrication process with low carbon footprint plays an increasingly important role considering the near-future industrialisation of this kind of solar cell with low energy payback time.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3803300)the Major Scientific and Technological Project in 2022 of Changsha,China(No.kq2301002).
文摘Perovskite solar cells(PSCs)based onα-phase FAPbI_(3)(α-FAPbI_(3))microcrystals precursor outperform those withδ-phase mi-crocrystals due to their superior crystallinity and fewer defects,makingα-phase microcrystals precursor more advantageous for high-per-formance PSCs.However,most reported synthesis methods of perovskite microcrystals,especially for aqueous synthesis,fail to reach the energy threshold required forα-phase transformation and therefore exhibit theδphase.In this study,we introduce a novel aqueous syn-thesis method to fabricateα-FAPbI_(3) microcrystals.Our approach overcomes the energy barrier by properly heating the reaction system,enabling the direct formation ofα-FAPbI_(3) in water.This direct one-step aqueous synthesis route yieldsα-FAPbI_(3) microcrystals with su-perior phase purity,crystallinity,and minimal defect density.Combined with green anti-solvent,the high-qualityα-FAPbI_(3) microcrystals serving as exceptional precursors endow perovskite films with reduced nonradiative recombination.The PSC achieves a remarkable power conversion efficiency(PCE)of 24.43%,which is one of the highest PCE reports for using the green anti-solvent in ambient air condition.This aqueous synthesis approach shows a significant potential for scalable production of high-performance PSCs.
基金supported by the National Key Research and Development Program of China(2022YFB3803300)Major Scientific and Technological Project of Changsha(kq2301002)。
文摘In perovskite solar cells(PSCs)with a wide bandgap(E_(g)≥1.65 eV),mixed halides generate poor-quality perovskite films and lead to a low power conversion efficiency(PCE)due to uncontrolled fast perovskite crystallization.Herein,we propose a strategy to regulate the grain growth of perovskite wet films by fumigating them in a dimethyl sulfoxide(DMSO)atmosphere.Due to the better coordination of DMSO with lead halides and organic halides,DMso fumigation effectively prolongs the existence time of intermediate phases,which slows the crystallization of perovskites,generating perovskite flms with large grains and a low defect density.Such high-quality perovskite flms were used to fabricate 1.65-evand 1.68-eV-bandgap PSCs,which achieved champion PCEs of 23.19%and 22.38%,respectively.The former PsC showed a V_(oc)deficit of o.391 V,representing one of the state-of-the-art performances for this bandgap.Monolithic perovskite/tunnelling oxide passivating contact(TOPCon)tandem solar cells(TSCs)were also fabricated using the optimized PSCs as front cells,achieving a champion PCE of 30.9%(certified 30.83%).This study demonstrates an easy-to-operate and effective approach to realize highperformance wide-bandgap PSCs and perovskite/TOPCon TSCs.
基金financially supported by the National Key Research and Development Program of China(2022YFB3803300)the Natural Science Foundation of Hunan Province of China(2021JJ10058)the Major Scientific and Technological Project of Changsha in 2022(kq2301002)。
基金financially supported by the National Key Research and Development Program of China(2018YFE0203400)the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032 and21961160720)for financial support。
文摘Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)thin films are attractive due to environmental-friendly and earth-abundant constituents,and superior optoelectronic properties such as high absorption coeffi-cient and tunable bandgaps(1.0-1.5 eV).In the past several years,profound progress has been made in CZTSSe via addressing the issues of massive deep defects[1,2],severe band tailing[3],uncon-trollable grain growth[4,5].and unoptimized interfaces[6,7].
基金This work is supported by the Chinese National Natural Science Foundation of China(31600773)Zhejiang Provincial Natural Science Foundation of China(LY18C100002).
文摘Large bone defect repair requires biomaterials that promote angiogenesis and osteogenesis.In present work,a nanoclay(Laponite,XLS)-functionalized 3D bioglass(BG)scaffold with hypoxia mimicking property was prepared by foam replication coupled with UV photopolymerization methods.Our data revealed that the incorporation of XLS can significantly promote the mechanical property of the scaffold and the osteogenic differentiation of human adipose mesenchymal stem cells(ADSCs)compared to the properties of the neat BG scaffold.Desferoxamine,a hypoxia mimicking agent,encourages bone regeneration via activating hypoxia-inducible factor-1 alpha(HIF-1α)-mediated angiogenesis.GelMA-DFO immobilization onto BG-XLS scaffold achieved sustained DFO release and inhibited DFO degradation.Furthermore,in vitro data demonstrated increased HIF-1αand vascular endothelial growth factor(VEGF)expressions on human adipose mesenchymal stem cells(ADSCs).Moreover,BG-XLS/GelMA-DFO scaffolds also significantly promoted the osteogenic differentiation of ADSCs.Most importantly,our in vivo data indicated BG-XLS/GelMA-DFO scaffolds strongly increased bone healing in a critical-sized mouse cranial bone defect model.Therefore,we developed a novel BG-XLS/GelMA-DFO scaffold which can not only induce the expression of VEGF,but also promote osteogenic differentiation of ADSCs to promote endogenous bone regeneration.
文摘Kesterite Cu2ZnSn(S,Se)4(CZTSSe)is one of the most promising next-generation thin-film photovoltaic materials due to its environmental friendliness and earthabundant constitutions,excellent optoelectronic properties(high absorption coefficient>104/cm and tunable band gap 1.0–1.5 eV)and high theoretical efficiency(32%).1,2 In 2014,12.6%3 efficiency was achieved by the IBM group using the hydrazine method.Based on the sputtering process,12.62%4 efficiency for CZTSSe and 12.5%5 efficiency for CZTSe have been achieved in recent years.However,the highest efficiency has stuck around 12.6%for several years.Lately,a breakthrough with certified 13%power conversion efficiency(PCE)has been demonstrated for CZTSSe thin-film solar cells,surpassing the dust-covered efficiency record since 2014.3,6 Along with the efficiency advancement of kesterite solar cells,a cost-effective fabrication process with low carbon footprint plays an increasingly important role considering the near-future industrialisation of this kind of solar cell with low energy payback time.