期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Bioinspired Precision Peeling of Ultrathin Bamboo Green Cellulose Frameworks for Light Management in Optoelectronics
1
作者 Yan Wang Yuan Zhang +2 位作者 yingfeng zuo Dawei Zhao Yiqiang Wu 《Nano-Micro Letters》 2026年第1期474-489,共16页
Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fund... Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency,coupled with impractical thicknesses(≥1 mm).Inspired by squid’s skin-peeling mechanism,this work develops a peroxyformic acid(HCOOOH)-enabled precision peeling strategy to isolate intact 10-μm-thick bamboo green(BG)frameworks—100×thinner than wood-based counterparts while achieving an unprecedented optical performance(88%haze with 80%transparency).This performance surpasses delignified biomass(transparency<40%at 1 mm)and matches engineered cellulose composites,yet requires no energy-intensive nanofibrillation.The preserved native cellulose I crystalline structure(64.76%crystallinity)and wax-coated uniaxial fibril alignment(Hermans factor:0.23)contribute to high mechanical strength(903 MPa modulus)and broadband light scattering.As a light-management layer in polycrystalline silicon solar cells,the BG framework boosts photoelectric conversion efficiency by 0.41%absolute(18.74%→19.15%),outperforming synthetic anti-reflective coatings.The work establishes a scalable,waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics. 展开更多
关键词 Bamboo green Cellulose framework Chemical peeling Optical properties Light management
在线阅读 下载PDF
淀粉/酚醛预聚物共缩聚胶黏剂的制备 被引量:4
2
作者 左迎峰 屠茹茹 +2 位作者 李萍 周亚 吴义强 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2020年第1期134-140,共7页
以玉米淀粉为原料,采用次氯酸钠进行氧化改性,并以聚乙烯醇为接枝剂进行接枝改性,再与酚醛预聚物进行共缩聚反应,制得淀粉/酚醛预聚物(S/PFO)共缩聚胶黏剂。讨论了淀粉/酚醛预聚物比例、共缩聚温度和共缩聚时间对S/PFO共缩聚胶黏剂固体... 以玉米淀粉为原料,采用次氯酸钠进行氧化改性,并以聚乙烯醇为接枝剂进行接枝改性,再与酚醛预聚物进行共缩聚反应,制得淀粉/酚醛预聚物(S/PFO)共缩聚胶黏剂。讨论了淀粉/酚醛预聚物比例、共缩聚温度和共缩聚时间对S/PFO共缩聚胶黏剂固体含量、黏度、固化时间、干状胶合强度和湿状胶合强度的影响。结果表明,淀粉/酚醛预聚物比例为15/120,共缩聚温度为90℃,共缩聚时间为2.0 h时,所制得的S/PFO共缩聚胶黏剂综合性能最佳。采用同步热分析和扫描电子显微镜对S/PFO共缩聚胶黏剂的固化性能和胶合界面进行了表征。相比于酚醛树脂胶黏剂,S/PFO共缩聚胶黏剂固化温度和固化焓值均降低,能够有效降低生产能耗。S/PFO共缩聚胶黏剂能将木材表面的孔隙均匀填满,形成一层薄薄的且连续的胶膜,有利于提高其胶接强度和耐水性能。 展开更多
关键词 淀粉 氧化接枝 酚醛预聚物 共缩聚 胶黏剂 胶合性能
在线阅读 下载PDF
间苯二酚-双醛淀粉-甲醛共缩聚树脂胶黏剂制备 被引量:1
3
作者 李萍 吴义强 +3 位作者 刘文杰 左迎峰 吕建雄 屠茹茹 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2019年第1期122-129,共8页
以玉米淀粉为原料,通过高碘酸钠在酸性条件下氧化得到双醛淀粉。将双醛淀粉与甲醛一起作为醛基给予体,与间苯二酚(R)共缩聚制备间苯二酚-双醛淀粉-甲醛(RDSF)树脂胶黏剂。研究了双醛淀粉用量、共反应p H、共反应温度和共反应时间对RDSF... 以玉米淀粉为原料,通过高碘酸钠在酸性条件下氧化得到双醛淀粉。将双醛淀粉与甲醛一起作为醛基给予体,与间苯二酚(R)共缩聚制备间苯二酚-双醛淀粉-甲醛(RDSF)树脂胶黏剂。研究了双醛淀粉用量、共反应p H、共反应温度和共反应时间对RDSF树脂胶黏剂固体含量、黏度、固化时间和胶接强度的影响。结果表明,双醛淀粉加入量为0. 15mol,共反应p H值为9. 0,共反应温度为70℃,共反应时间为90 min时,制得的RDSF树脂胶黏剂综合性能最佳,此时固体含量为42. 59%,黏度为725 m Pa·s,固化时间为53 s,干状胶合强度为1. 38 MPa,湿状胶合强度为1. 17 MPa。傅里叶变换红外光谱测试发现RDSF树脂的结构近似于间苯二酚-甲醛(RF)树脂,表明RDSF树脂可代替RF树脂使用。差示扫描量热分析发现RDSF树脂的固化温度和固化焓值低于RF树脂,固化峰值温度为77. 43℃,固化焓值为-238. 91 J/g,表明其固化能耗更低。 展开更多
关键词 间苯二酚 双醛淀粉 共缩聚 合成工艺 化学结构 固化性能
在线阅读 下载PDF
Comparative Study on the Properties of Inorganic Silicate and Organic Phenolic Prepolymer Modified Poplar Wood by Vacuum Cycle Pressurization 被引量:3
4
作者 Pengfei Guan Ping Li +3 位作者 Yiqiang Wu Xingong Li Guangming Yuan yingfeng zuo 《Journal of Renewable Materials》 SCIE EI 2022年第9期2451-2463,共13页
To enhance mechanical properties and improve flame retardancy and smoke suppression of fast-growing poplar wood in wood applications,the wood was impregnated and modified.An organic phenolic prepolymer and inorganic s... To enhance mechanical properties and improve flame retardancy and smoke suppression of fast-growing poplar wood in wood applications,the wood was impregnated and modified.An organic phenolic prepolymer and inorganic sodium silicate was used as contrasting impregnation modifiers and wood samples were impregnated by a bionic“respiration”method with alternating positive and negative pressure.The weight percentage gain,density increase ratio,mechanical properties(bending and compressive strength and hardness),and water absorption rate of inorganic and organic-impregnated modified poplar wood(IIMPW and OIMPW,respectively)were compared and these properties in IIMPW were found to be higher than those of OIMPW with the exception of the water absorption rate which was lower than the OIMPW.This was attributed to the superior absorption of sodium silicate that also improved the impregnation,reinforcement,and dimensional stability in the IIMPW.The chemical structure,crystalline structure,internal morphology,flame retardancy,smoke suppression,and thermal stability of IIMPW and OIMPW were characterized by FT-IR,XRD,SEM,CONE,and TGA.FT-IR and XRD results showed that,although IIMPW cellulose crystallinity reduced the most,more chemical bonds were come into being in IIMPW,which explained the better physical and mechanical properties of IIMPW.Compared with OIMPW,IIMPW had better flame retardant and smoke suppression performance. 展开更多
关键词 Poplar wood sodium silicate impregnation modification mechanical properties dimensional stability flame retardancy and smoke suppression
在线阅读 下载PDF
Preparation and Characterization of Phenolic Prepolymer Impregnated Chinese Fir by Cyclic Increasing-Pressure Method with Green and Efficient 被引量:3
5
作者 Yuan Zhang Ping Li +3 位作者 Yiqiang Wu Guangming Yuan Xianjun Li yingfeng zuo 《Journal of Renewable Materials》 SCIE EI 2020年第11期1473-1488,共16页
The Chinese fir wood was impregnated using a cyclic increasingpressure method(CIPM)with phenolic prepolymers as the impregnating modifier.Unmodified Chinese fir and progressive increasing-pressure method(PIPM)impregna... The Chinese fir wood was impregnated using a cyclic increasingpressure method(CIPM)with phenolic prepolymers as the impregnating modifier.Unmodified Chinese fir and progressive increasing-pressure method(PIPM)impregnated Chinese fir were used as reference samples and were compared and analyzed.The product’s chemical structure,internal morphology,crystal structure,and heat resistance were characterized.The transversal and longitudinal sections showed better filling effects,so that it bore greater external loading and reduced the water storage space.CIPM infused more phenolic prepolymer into the Chinese fir.Not only producing more physical filling but also forming more hydrogen bond associations and chemical bond combinations.Compared with PIPM and unmodi-fied Chinese fir,the CIPM impregnated Chinese fir had better mechanical strength and water resistance.The cellulose chains in CIPM impregnated Chinese fir were more closely linked and their crystallinity were clearly improved.Changes in internal morphology and crystal structure explained the reason why the mechanical properties and water resistance of CIPM impregnated Chinese fir were improved significantly.This Chinese fir had lower thermal decomposition rates,higher decomposition residual rates,and smaller combustion flames,which confirmed that it possessed improved heat and fire resistance. 展开更多
关键词 Chinese fir phenolic prepolymer cyclic increasing pressure method chemical structure crystalline structure heat resistance
在线阅读 下载PDF
Effect of Multi-Hydroxyl Polymer-Treated MUF Resin on the Mechanical Properties of Particleboard Manufactured with Reed Straw 被引量:2
6
作者 Yuhui Huang Zhiyuan Yin +4 位作者 Ming Liu Meng Li yingfeng zuo Yan Qing Yiqiang Wu 《Journal of Renewable Materials》 EI 2023年第9期3417-3431,共15页
The poor bonding performance between aqueous adhesives represented by melamine-urea formaldehyde(MUF)resins and reed straw hinders their applications in the field of non-wood-based panels.Multi-hydroxyl polymers are h... The poor bonding performance between aqueous adhesives represented by melamine-urea formaldehyde(MUF)resins and reed straw hinders their applications in the field of non-wood-based panels.Multi-hydroxyl polymers are highly reactive and are often used as crosslinkers.This study fabricated a resin with a strengthened crosslinked structure by combining a multi-hydroxyl polymer and MUF resin prepolymer.The reed particleboard was prepared by using this resin as an adhesive and reed stalk as the matrix.The results show that neighboring molecules combined to form C–O–C bonds that strengthened the cross-linked structure of the resin.In addition,the viscosity of the resin was increased,and a continuous adhesive layer on the surface of reed particles was formed,which slowed the penetration of reed particles.The adhesive layer significantly improved the mechanical properties of the reed particleboard.The maximum modulus of rupture(MOR),modulus of elasticity(MOE),and internal bonding strength(IB)of the reed particleboard were 33.53,4126,and 0.79 MPa,respectively.The IB of the board was 3.3 times higher than that of the reed particleboard prepared with a conventional MUF resin.Reed straw is a non-wood biomass material that has the advantage of sustainable development and may replace woodbased materials to produce particleboard.This resin-prepared reed particleboard is expected to be used in areas such as custom furniture and engineering materials. 展开更多
关键词 Multi-hydroxyl polymers melamine-urea formaldehyde(MUF)resin cross-linked reed particleboard mechanical property
在线阅读 下载PDF
Selecting the Technology of Sodium Silicate Modified Poplar with the Highest Performance by Fuzzy Orthogonal Method 被引量:1
7
作者 Xiaoqian Bi Pengfei Guan +3 位作者 Ping Li Yuan Zhang Xingong Li yingfeng zuo 《Journal of Renewable Materials》 SCIE EI 2023年第5期2399-2415,共17页
Sodium silicate modification can improve the overall performance of wood.The modification process has a great influence on the properties of modified wood.In this study,a new method was introduced to analyze the wood ... Sodium silicate modification can improve the overall performance of wood.The modification process has a great influence on the properties of modified wood.In this study,a new method was introduced to analyze the wood modification process,and the properties of modified wood were studied.Poplar wood was modified with sodium silicate by vacuum-pressure impregnation.After screening using single-factor experiments,an orthogonal experiment was carried out with solution concentration,impregnation time,impregnation pressure,and the cycle times as experimental factors.The modified poplar with the best properties was selected by fuzzy mathematics and characterized by SEM,FT-IR,XRD and TG.The results showed that some lignin and hemicellulose were removed from the wood due to the alkaline action of sodium silicate,and the orderly crystal area of poplar became disorderly,resulting in the reduction of crystallinity of the modified poplar wood.FT-IR analysis showed that sodium silicate was hydrolyzed to form polysilicic acid in wood,and structural analysis revealed the formation of Si-O-Si and Si-O-C,indicating that sodium silicate reacted with fibers on the wood cell wall.TG-DTG curves showed that the final residual mass of modified poplar wood increased from 25%to 67%,and the temperature of the maximum loss rate decreased from 343℃ to 276℃.The heat release and smoke release of modified poplar wood decreased obviously.This kind of material with high strength and fire resistance can be used in the outdoor building and indoor furniture. 展开更多
关键词 Poplar wood sodium silicate impregnation modification fuzzy orthogonal method process optimization flame retardant
在线阅读 下载PDF
Effect of the Proportion of Bamboo Scraps on the Properties of Bamboo Scraps/Magnesium Oxychloride Composites 被引量:1
8
作者 Long Zheng Yiqiang Wu +3 位作者 Shu Wang Guoan Sheng Baorong Sun yingfeng zuo 《Journal of Renewable Materials》 SCIE EI 2021年第10期1729-1739,共11页
This study was designed to solve the problem of large waste volume from bamboo processing residues in recent years.Using magnesium oxychloride(MO)cementitious material as the main material and bamboo residue(BR)as the... This study was designed to solve the problem of large waste volume from bamboo processing residues in recent years.Using magnesium oxychloride(MO)cementitious material as the main material and bamboo residue(BR)as the reinforcing material,a BR/MO composite material was prepared.The effects of BR amount on the molding properties,mechanical strength,and water resistance of BR/MO composites were examined and discussed.Scanning electron microscopy(SEM),X-ray diffractometry(XRD),and thermogravimetric analysis were used to characterize composite microscopic morphology,crystalline structure,and heat resistance.The results showed that,when the BR content was 1.00%(by wt),the flowability of MO paste was beneficial to composite molding.Composite mechanical properties and water resistance were greatly affected by BR addition.When the BR content was 1.00%,composite compressive and bending strengths and softening coefficient all reached maximum values.Meanwhile,increases in water absorption by 24 h and decreases of contact angle were small.These results suggested that,when the BR content was 1.00%,composite mechanical properties and water resistance were the best and the mechanical strength also improved with extended composite storage time.SEM analysis indicated that BR played the role of a reinforcing phase in MO matrices.However,when the BR content exceeded 1.00%,interfacial bonding between BR and MO became less.XRD analysis showed that,with 1.00%BR content,composites showed more 5-phase crystals with high strength.This further explained the reason why this composite’s mechanical properties were the best and the heat resistance not deteriorated due to BR,which was easily decomposed. 展开更多
关键词 Bamboo scraps magnesium oxychloride cementation mechanical properties water resistance interface bonding crystal structure
在线阅读 下载PDF
Biobased Furfurylated Poplar Wood for Flame-Retardant Modification with Boric Acid and Ammonium Dihydrogen Phosphate 被引量:1
9
作者 Ming Ni Lei Li +4 位作者 Yiqiang Wu Jianzheng Qiao Yan Qing Ping Li yingfeng zuo 《Journal of Renewable Materials》 EI CAS 2024年第8期1355-1368,共14页
Furfurylated wood exhibits excellent dimensional stability and corrosion resistance,making it a promising material for constructing buildings,but it is highly flammable.Herein,flame-retardant furfurylated poplar wood ... Furfurylated wood exhibits excellent dimensional stability and corrosion resistance,making it a promising material for constructing buildings,but it is highly flammable.Herein,flame-retardant furfurylated poplar wood was produced via a two-step process utilizing boric acid(BA)and ammonium dihydrogen phosphate(ADP)as flame-retardant components,and biomass-derived furfuryl alcohol(FA)as a modifier.The acidity of BA and ADP allowed them to catalyze the polymerization of FA,which formed a cross-linked network that immobilized BA and ADP inside the wood.The addition of BA/ADP substantially delayed the time to ignition from 10 to 385 s and reduced the total heat release and total smoke release by 58.75%and 77.31%,respectively.Analysis of the pyrolysis process showed that the decomposition products of BA and ADP protected the underlying furfurylated wood and diluted combustible gases.This method significantly improved the fire retardancy and smokeless properties of furfurylated wood,providing promising prospects for its application as an engineering material. 展开更多
关键词 Poplar wood furfuryl alcohol furfurylated wood flame retardancy boric acid ammonium dihydrogen phosphate
在线阅读 下载PDF
Elevated Temperature Properties of Bamboo Shaving Reinforced Geopolymer Composites
10
作者 Xinli Zhang Jiayu Zhang +2 位作者 Zuhua Zhang Yiqiang Wu yingfeng zuo 《Journal of Renewable Materials》 SCIE EI 2023年第1期27-40,共14页
Geopolymer is a new alternative cement binder to produce concrete.In the present study,a novel geopolymer composites containing bamboo shaving(0–2 wt.%)were fabricated and exposed to the temperatures of 200℃,400℃,... Geopolymer is a new alternative cement binder to produce concrete.In the present study,a novel geopolymer composites containing bamboo shaving(0–2 wt.%)were fabricated and exposed to the temperatures of 200℃,400℃,600℃and 800℃.Physical properties,micro-structure,and mechanical strengths of the geopolymer composites were evaluated before and after heating in order to understand their thermal properties,which are essential for the use as building materials.As the temperature rises,the drying shrinkage and apparent porosity of the composites increase,while the compressive and bending strengths decrease.At the temperature range of 200℃–800℃,the residual compressive strength rates of the geopolymer composite containning 2 wt.%bamboo shaving were respective 73.8%,61.47%,56.16%,and 29.56%,meanwhile,the residual flexural strength rates were respective 46.69%,8.68%,2.52%,and 2.33%.Correspondingly,the residual compressive strength rates of pure geopolymer were respective 72.81%,61.99%,54.55%,and 14.64%;the residual flexural strength rates were 48.87%,5.69%,3.22%,and 2.47%,respectively.Scanning electron microscope(SEM),optical microscope,and X-ray diffractometry(XRD)were applied to find the microscopic changes.The strength loss in the geopolymer composites was mainly because of the thermal degradation of bamboo shaving and shrinkage of geopolymer matrix.Bamboo shaving has great potential as reinforcer in developing low-cost geopolymer composites and may be used for applications up to 400℃. 展开更多
关键词 Geopolymer composites bamboo shaving mechanical properties high temperature microstructure
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部