Nitrate synthesis is an important process for agriculture and industry,but suffers from energy-intensive steps including the synthesis and subsequent oxidation of ammonia.Herein,we present a selective N_(2)transformat...Nitrate synthesis is an important process for agriculture and industry,but suffers from energy-intensive steps including the synthesis and subsequent oxidation of ammonia.Herein,we present a selective N_(2)transformation to nitrate by guiding the charge neutralization of self-electrified water microdroplets in an artificial cloud generated with the portable ultrasonic atomizer.The electron and ion transfer in the charge neutralization of water microdroplets on metal micromesh enables an up to~40-fold increase in the reactivity of nitrate formation reaction driven by ultrasonic energy.A robust semi-continuous N_(2)oxidation by a Ni-mesh-screened cloud system was achieved,providing nitrate with~12 mM concentration every 20 h.These findings emphasize the potential of harnessing the microdroplet-mediated cloud electrochemistry of N_(2)in decentralizing the current mass production of fertilizer.展开更多
基金supported by the National Key R&D Program of China(2022YFA1504603)the National Natural Science Foundation of China(22025206,22172163)+1 种基金the Dalian Innovation Support Plan for High Level Talents(2022RG13)the Fundamental Research Funds for the Central Universities(20720220008)。
文摘Nitrate synthesis is an important process for agriculture and industry,but suffers from energy-intensive steps including the synthesis and subsequent oxidation of ammonia.Herein,we present a selective N_(2)transformation to nitrate by guiding the charge neutralization of self-electrified water microdroplets in an artificial cloud generated with the portable ultrasonic atomizer.The electron and ion transfer in the charge neutralization of water microdroplets on metal micromesh enables an up to~40-fold increase in the reactivity of nitrate formation reaction driven by ultrasonic energy.A robust semi-continuous N_(2)oxidation by a Ni-mesh-screened cloud system was achieved,providing nitrate with~12 mM concentration every 20 h.These findings emphasize the potential of harnessing the microdroplet-mediated cloud electrochemistry of N_(2)in decentralizing the current mass production of fertilizer.