The dependence of the subduction regime on three-dimensional slab geometry poses a challenge for accurately estimating the evolving thermal structure of megathrusts globally. Although slab dips and ages have gained at...The dependence of the subduction regime on three-dimensional slab geometry poses a challenge for accurately estimating the evolving thermal structure of megathrusts globally. Although slab dips and ages have gained attention, the specific impacts of oblique subduction remain unmeasured. Here, we present an integrated thermal model that quantifies how slab morphology can shape the thermal state of megathrusts, such as those in the Makran Subduction Zone. The model considers both slab obliquity and depth variations along the trench. We find a considerable match between the slab petrological dehydration zone and the distribution of great crustal earthquakes. We suggest that the accumulation of fluids along megathrusts by slab metamorphism can foster more polarized conditions for decreasing plate coupling and increasing interplate ruptures. It is thus imperative to improve model representation and more realistically represent how drivers of slab geometry affect metamorphic transitions and the occurrence of earthquakes at megathrusts.展开更多
Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurr...Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurrence of earthquakes in subduction zones is thought to be closely related to the thermal structure of the incoming plate. However, in the case of the subducting Nazca Plate beneath the Colombia–Ecuador zone, the thermal structure remains unclear, especially its hydraulic distribution. On the basis of 3D thermal models, we present new insights into the plate interface conditions of Colombia–Ecuador interplate and megathrust earthquakes. We show that the plate geometry strongly affects the along-strike thermal structure of the slab beneath Colombia and Ecuador, with the subduction of the Carnegie Ridge playing an important role. Our results further reveal that the unique geometry of the Nazca Plate is the primary reason for the relatively high temperatures of the slab beneath Colombia. We suggest that the positions of the100–200 ℃ and 350–450 ℃ isotherms on the plate interface determine the updip and downdip limits of the seismogenic zone. For Colombia–Ecuador interplate earthquakes, the released fluids control the distribution of shallow-depth earthquakes, whereas the age and geometry of the slab control the distribution of intermediate-depth earthquakes. The average temperature of the plate interface at the upper limit of large megathrust earthquakes is hotter than previously thought, which is more consistent with our understanding of the Colombia–Ecuador subduction zone. We predict that the potential location of future large seismic events could be in the rupture zone of past seismic events or offshore of northern Colombia.展开更多
We investigated the relationships among slab geometry, obliquity, and the thermal regime associated with the subduction of oceanic plates using a three-dimensional (3D) parallelepiped thermal convection model. Vario...We investigated the relationships among slab geometry, obliquity, and the thermal regime associated with the subduction of oceanic plates using a three-dimensional (3D) parallelepiped thermal convection model. Various models with convex and concave slab shapes were constructed in the numerical simu- lation, and the temperature and mantle flow distributions were calculated. The results revealed that when the slab dip angle increases, or the obliquity of subduction becomes steeper, the interplate tem- perature decreases remarkably. Cooler (warmer) zones on the plate interface were identified from the modeling where there was a larger (smaller) subduction angle. Consequently, the interplate temperature distribution is partly controlled by the true subduction angle (TSA), which is a function of the slab dip angle and the obliquity of subduction. The rate of change of the interface temperature for the TSA was 10-50 ℃ (10°〈 TSA 〈 20°) at depths ranging from (TSA 10) × 5 km to 60 + (TSA 10) × 5 km for a fiat slab after a subduction history of 7 Myrs. The along-arc slab curvature affects the variation in TSA. The slab radius also appeared to influence the radius of induced mantle flow.展开更多
Based on an analysis of connotation and extension of the concept of the orthogonal curvilinear coordinates, we have deduced a platform of strain tensor expression of Cartesian coordinates, which turns out to be a func...Based on an analysis of connotation and extension of the concept of the orthogonal curvilinear coordinates, we have deduced a platform of strain tensor expression of Cartesian coordinates, which turns out to be a function of Lame coefficient and unit vector. By using transform matrix between Cartesian coordinates and orthogonal eurvilinear coordinates, we have deduced a mathematical expression for correcting displacement vector differential in orthogonal curvilinear coordinates, and given a general expression of strain tensor in orthogonal curvilinear coordinates.展开更多
基金benefited from the financial support of the Chinese Academy of Sciences Pioneer Hundred Talents Programthe Second Tibetan Plateau Scientific Expedition and Research Program (Grant No. 2019QZKK0708)+2 种基金the MEXT KAKENHI grant (Grant No. 21H05203)the Kobe University Strategic International Collaborative Research Grant (Type B Fostering Joint Research)the “Science of Slowto-Fast Earthquakes” project。
文摘The dependence of the subduction regime on three-dimensional slab geometry poses a challenge for accurately estimating the evolving thermal structure of megathrusts globally. Although slab dips and ages have gained attention, the specific impacts of oblique subduction remain unmeasured. Here, we present an integrated thermal model that quantifies how slab morphology can shape the thermal state of megathrusts, such as those in the Makran Subduction Zone. The model considers both slab obliquity and depth variations along the trench. We find a considerable match between the slab petrological dehydration zone and the distribution of great crustal earthquakes. We suggest that the accumulation of fluids along megathrusts by slab metamorphism can foster more polarized conditions for decreasing plate coupling and increasing interplate ruptures. It is thus imperative to improve model representation and more realistically represent how drivers of slab geometry affect metamorphic transitions and the occurrence of earthquakes at megathrusts.
基金benefited from the financial support of the CAS Pioneer Hundred Talents Program and the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0708)。
文摘Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurrence of earthquakes in subduction zones is thought to be closely related to the thermal structure of the incoming plate. However, in the case of the subducting Nazca Plate beneath the Colombia–Ecuador zone, the thermal structure remains unclear, especially its hydraulic distribution. On the basis of 3D thermal models, we present new insights into the plate interface conditions of Colombia–Ecuador interplate and megathrust earthquakes. We show that the plate geometry strongly affects the along-strike thermal structure of the slab beneath Colombia and Ecuador, with the subduction of the Carnegie Ridge playing an important role. Our results further reveal that the unique geometry of the Nazca Plate is the primary reason for the relatively high temperatures of the slab beneath Colombia. We suggest that the positions of the100–200 ℃ and 350–450 ℃ isotherms on the plate interface determine the updip and downdip limits of the seismogenic zone. For Colombia–Ecuador interplate earthquakes, the released fluids control the distribution of shallow-depth earthquakes, whereas the age and geometry of the slab control the distribution of intermediate-depth earthquakes. The average temperature of the plate interface at the upper limit of large megathrust earthquakes is hotter than previously thought, which is more consistent with our understanding of the Colombia–Ecuador subduction zone. We predict that the potential location of future large seismic events could be in the rupture zone of past seismic events or offshore of northern Colombia.
文摘We investigated the relationships among slab geometry, obliquity, and the thermal regime associated with the subduction of oceanic plates using a three-dimensional (3D) parallelepiped thermal convection model. Various models with convex and concave slab shapes were constructed in the numerical simu- lation, and the temperature and mantle flow distributions were calculated. The results revealed that when the slab dip angle increases, or the obliquity of subduction becomes steeper, the interplate tem- perature decreases remarkably. Cooler (warmer) zones on the plate interface were identified from the modeling where there was a larger (smaller) subduction angle. Consequently, the interplate temperature distribution is partly controlled by the true subduction angle (TSA), which is a function of the slab dip angle and the obliquity of subduction. The rate of change of the interface temperature for the TSA was 10-50 ℃ (10°〈 TSA 〈 20°) at depths ranging from (TSA 10) × 5 km to 60 + (TSA 10) × 5 km for a fiat slab after a subduction history of 7 Myrs. The along-arc slab curvature affects the variation in TSA. The slab radius also appeared to influence the radius of induced mantle flow.
文摘Based on an analysis of connotation and extension of the concept of the orthogonal curvilinear coordinates, we have deduced a platform of strain tensor expression of Cartesian coordinates, which turns out to be a function of Lame coefficient and unit vector. By using transform matrix between Cartesian coordinates and orthogonal eurvilinear coordinates, we have deduced a mathematical expression for correcting displacement vector differential in orthogonal curvilinear coordinates, and given a general expression of strain tensor in orthogonal curvilinear coordinates.