Poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate)(PETG)possesses excellent properties and stability than traditional poly(ethylene terephthalate)(PET).However,the production and application of PETG are ...Poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate)(PETG)possesses excellent properties and stability than traditional poly(ethylene terephthalate)(PET).However,the production and application of PETG are restricted by the expensive monomer(1,4-cyclohexanedimethanol,CHDM).Direct upgrading of waste PET to dimethyl cyclohexane-1,4-dicarboxylate(DMCD)can promote the production of CHDM in large scale.In this work,a bifunctional Ru/UiO-66_(def)-SO_(3)H catalyst was synthesized and utilized in coupled methanolysis(of waste PET to dimethyl terephthalate(DMT))and hydrogenation(of DMT to DMCD)under mild condition.Characterizations revealed that Ru/UiO-66_(def)-SO_(3)H possessed mesopores(dominant channels of 2.72 and 3.44 nm),enlarged surface area(998 m^(2)·g^(–1)),enhanced acidity(580μmol·g^(–1)),and Ru nanoparticles(NPs)dispersed highly(45.1%)compared to those of Ru/UiO-66.These combined advantages could accelerate the methanolysis and hydrogenation reactions simultaneously,promoting the performance of direct upgrading of PET to DMCD in one pot.In particular,the conversion of PET and yield of DMCD over Ru/UiO-66_(def)-SO_(3)H reached 100%and 97.7%at 170℃and 3 MPa H_(2)within 6 h.Moreover,Ru/UiO-66_(def)-SO3H was also capable for the upcycling of waste PET-based products including beverage bottles,textile fiber and packaging film to DMCD.展开更多
文摘Poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate)(PETG)possesses excellent properties and stability than traditional poly(ethylene terephthalate)(PET).However,the production and application of PETG are restricted by the expensive monomer(1,4-cyclohexanedimethanol,CHDM).Direct upgrading of waste PET to dimethyl cyclohexane-1,4-dicarboxylate(DMCD)can promote the production of CHDM in large scale.In this work,a bifunctional Ru/UiO-66_(def)-SO_(3)H catalyst was synthesized and utilized in coupled methanolysis(of waste PET to dimethyl terephthalate(DMT))and hydrogenation(of DMT to DMCD)under mild condition.Characterizations revealed that Ru/UiO-66_(def)-SO_(3)H possessed mesopores(dominant channels of 2.72 and 3.44 nm),enlarged surface area(998 m^(2)·g^(–1)),enhanced acidity(580μmol·g^(–1)),and Ru nanoparticles(NPs)dispersed highly(45.1%)compared to those of Ru/UiO-66.These combined advantages could accelerate the methanolysis and hydrogenation reactions simultaneously,promoting the performance of direct upgrading of PET to DMCD in one pot.In particular,the conversion of PET and yield of DMCD over Ru/UiO-66_(def)-SO_(3)H reached 100%and 97.7%at 170℃and 3 MPa H_(2)within 6 h.Moreover,Ru/UiO-66_(def)-SO3H was also capable for the upcycling of waste PET-based products including beverage bottles,textile fiber and packaging film to DMCD.