Lost circulation, a recurring peril during drilling operations, entails substantial loss of drilling fluid and dire consequences upon its infiltration into the formation. As drilling depth escalates, the formation tem...Lost circulation, a recurring peril during drilling operations, entails substantial loss of drilling fluid and dire consequences upon its infiltration into the formation. As drilling depth escalates, the formation temperature and pressure intensify, imposing exacting demands on plug materials. In this study, a kind of controllable curing resin with dense cross-network structure was prepared by the method of solution stepwise ring-opening polymerization. The resin plugging material investigated in this study is a continuous phase material that offers effortless injection, robust filling capabilities, exceptional retention, and underground curing or crosslinking with high strength. Its versatility is not constrained by fracture-cavity lose channels, making it suitable for fulfilling the essential needs of various fracture-cavity combinations when plugging fracture-cavity carbonate rocks. Notably, the curing duration can be fine-tuned within the span of 3-7 h, catering to the plugging of drilling fluid losing of diverse fracture dimensions. Experimental scrutiny encompassed the rheological properties and curing behavior of the resin plugging system, unraveling the intricacies of the curing process and establishing a cogent kinetic model. The experimental results show that the urea-formaldehyde resin plugging material has a tight chain or network structure. When the concentration of the urea-formaldehyde resin plugging system solution remains below 30%, the viscosity clocks in at a meager 10 mPa·s. Optimum curing transpires at 60℃, showcasing impressive resilience to saline conditions. Remarkably, when immersed in a composite saltwater environment containing 50000 mg/L NaCl and 100000 mg/L CaCl_(2), the urea-formaldehyde resin consolidates into an even more compact network structure, culminating in an outstanding compressive strength of 41.5 MPa. Through resolving the correlation between conversion and the apparent activation energy of the non-isothermal DSC curing reaction parameters, the study attests to the fulfillment of the kinetic equation for the urea-formaldehyde resin plugging system. This discerning analysis illuminates the nuanced shifts in the microscopic reaction mechanism of the urea-formaldehyde resin plugging system. Furthermore, the pressure bearing plugging capacity of the resin plugging system for fractures of different sizes is also studied. It is found that the resin plugging system can effectively resident in parallel and wedge-shaped fractures of different sizes, and form high-strength consolidation under certain temperature conditions. The maximum plugging pressure of resin plugging system for parallel fractures with outlet size 3 mm can reach 9.92 MPa, and the maximum plugging pressure for wedge-shaped fractures with outlet size 5 mm can reach 9.90 MPa. Consequently, the exploration and application of urea-formaldehyde resin plugging material precipitate a paradigm shift, proffering novel concepts and methodologies in resolving the practical quandaries afflicting drilling fluid plugging.展开更多
Self-healing hydrogels have attracted tremendous attention in the field of oil and gas drilling and production engineering because of their excellent self-healing performance after physical damage.In this study,a seri...Self-healing hydrogels have attracted tremendous attention in the field of oil and gas drilling and production engineering because of their excellent self-healing performance after physical damage.In this study,a series of double network self-healing(DN_(SA))hydrogels based on hydrophobic association and ionic bond were prepared for plugging pores and fractures in formations in oil and gas drilling and production engineering.The mechanical,rheological,and self-healing properties of the DN_(SA)hydrogels were investigated.Results revealed that the DN_(SA)hydrogels exhibited excellent mechanical properties with a tensile stress of 0.67 MPa and toughness of 7069 kJ/cm^(3) owing to the synergistic effect of the double network.In addition,the DN_(SA)hydrogels exhibited excellent compression resistance,notch insensitivity,and self-healing properties.The DN_(SA)-2 hydrogel was granulated and made into gel particles with different particle sizes and used as a plugging agent.The self-healing mechanism of DN_(SA)-2 hydrogel particles in fractures was explored,and it’s plugging effect on fractures of different widths and porous media of different permeabilities were investigated.Experimental results revealed that the plugging capacity of the DN_(SA)-2 hydrogel particles for a fracture with width of 5 mm and a porous medium with a permeability of 30μm^(2) was 3.45 and 4.21 MPa,respectively,which is significantly higher than those of commonly used plugging agents in the oilfield.The DN_(SA)hydrogels with excellent mechanical and self-healing properties prepared in this study will provide a new approach for applying hydrogels in oil and gas drilling and production engineering.展开更多
Lost circulation of drilling fluid is one of the most common engineering problems in the drilling process of fractured formations.In this study,an oil-absorbing polymer gel synthesized using compound monomers with rig...Lost circulation of drilling fluid is one of the most common engineering problems in the drilling process of fractured formations.In this study,an oil-absorbing polymer gel synthesized using compound monomers with rigid and flexible chains was applied to control the oil-based drilling fluid loss while drilling.The microstructure,oil-absorbing performance,and plugging performance the gel was investigated.A large number of dense pores on the surface of the gel were observed,which allowed the oil molecules to enter the internal space of the gel.The initial oil absorption capacity of the gel was fast,and it increased with the increase in the temperature and decrease in the particle size,reaching 20.93 g/g at140℃.At a high temperature of 140℃,the bearing pressure capacity of the gel formula containing particles of different particle sizes reached 7.6 MPa for a fracture of a width of 3 mm,showing that the oil-absorbing gel have excellent plugging performance at high temperature.Plugging mechanism of the gel was investigated through visualized fracture plugging experiments.Results show that the dynamic migratio n,particle-swelling,particle-bridging,particle-aggregation,deformation-filling,and compaction-plugging contribute to the whole lost circulation control process,reflecting that the plugging performance can be effectively enhanced by improving the aggregation and filling degrees of the gel with different particle sizes.展开更多
The excellent mechanical properties of supramolecular gel could adapt to the complex reservoir environment and had broad application prospects in the field of oil and gas drilling and production engineering.In this pa...The excellent mechanical properties of supramolecular gel could adapt to the complex reservoir environment and had broad application prospects in the field of oil and gas drilling and production engineering.In this paper,a supramolecular gel based on hydrophobic association and hydrogen bonding was prepared by micellar copolymerization,which could be used to plug fractures and pores in formations.Supramolecular gel was a gel network system with high performance characteristics formed by self-assembly of non-covalent bond interaction.The rheological properties,mechanical mechanics,temperature resistance and swelling ability of supramolecular gel were studied.The results showed that the supramolecular gel had a dense three-dimensional network structure with open and interconnected pore structures,which could exhibit good rheological properties and strong viscoelastic recovery ability.The mechanical properties of the supramolecular gel were excellent,it had a tensile stress of 0.703 MPa and an elongation at break of 1803%.When the compressive strain was 96%,the compressive stress could reach 14.5 MPa.Supramolecular gel also showed good temperature resistance and swelling properties.At the aging temperature of 135℃,supramolecular gels still maintained good gel strength,and it only took 12 h to reach the equilibrium swelling ratio of 35.87 in 1%NaCl solution.It was also found that supramolecular gel in low concentration saline(1%NaCl solution)showed relatively faster swelling than high concentration saline(25%NaCl solution).The swelling process of the supramolecular gel was non-Fick diffusion(typeⅡ).This indicated that the organic/inorganic permeability network was well formed.Therefore,the diffusion rate of small molecules could be guaranteed to be equal to the relaxation rate of large molecules before and after the phase transition temperature.In addition to the diffusion of water molecules,the swelling process of the supramolecular gel was also affected by the relaxation of gel network and polymer chain segment,the interaction between water molecules and polymer network and the groups of polymer network and other factors.Supramolecular gel particles could be used as plugging materials for drilling fluids,which had excellent ability to plug formation fractures and pores.The plugging ability of the supramolecular gel was up to 6.7 MPa for 0.5 mm fracture width,and 9.6 MPa for porous media with 5 mD permeability.Compared with HT-PPG gel particles commonly used in oil fields,supramolecular gel particles had better plugging ability on fractures and porous media.The development and application of supramolecular gel had far-reaching significance for promoting the functional application of polymer materials in drilling and production engineering.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant 52374023, 52288101)Taishan Scholar Young Expert (Grant tsqn202306117)。
文摘Lost circulation, a recurring peril during drilling operations, entails substantial loss of drilling fluid and dire consequences upon its infiltration into the formation. As drilling depth escalates, the formation temperature and pressure intensify, imposing exacting demands on plug materials. In this study, a kind of controllable curing resin with dense cross-network structure was prepared by the method of solution stepwise ring-opening polymerization. The resin plugging material investigated in this study is a continuous phase material that offers effortless injection, robust filling capabilities, exceptional retention, and underground curing or crosslinking with high strength. Its versatility is not constrained by fracture-cavity lose channels, making it suitable for fulfilling the essential needs of various fracture-cavity combinations when plugging fracture-cavity carbonate rocks. Notably, the curing duration can be fine-tuned within the span of 3-7 h, catering to the plugging of drilling fluid losing of diverse fracture dimensions. Experimental scrutiny encompassed the rheological properties and curing behavior of the resin plugging system, unraveling the intricacies of the curing process and establishing a cogent kinetic model. The experimental results show that the urea-formaldehyde resin plugging material has a tight chain or network structure. When the concentration of the urea-formaldehyde resin plugging system solution remains below 30%, the viscosity clocks in at a meager 10 mPa·s. Optimum curing transpires at 60℃, showcasing impressive resilience to saline conditions. Remarkably, when immersed in a composite saltwater environment containing 50000 mg/L NaCl and 100000 mg/L CaCl_(2), the urea-formaldehyde resin consolidates into an even more compact network structure, culminating in an outstanding compressive strength of 41.5 MPa. Through resolving the correlation between conversion and the apparent activation energy of the non-isothermal DSC curing reaction parameters, the study attests to the fulfillment of the kinetic equation for the urea-formaldehyde resin plugging system. This discerning analysis illuminates the nuanced shifts in the microscopic reaction mechanism of the urea-formaldehyde resin plugging system. Furthermore, the pressure bearing plugging capacity of the resin plugging system for fractures of different sizes is also studied. It is found that the resin plugging system can effectively resident in parallel and wedge-shaped fractures of different sizes, and form high-strength consolidation under certain temperature conditions. The maximum plugging pressure of resin plugging system for parallel fractures with outlet size 3 mm can reach 9.92 MPa, and the maximum plugging pressure for wedge-shaped fractures with outlet size 5 mm can reach 9.90 MPa. Consequently, the exploration and application of urea-formaldehyde resin plugging material precipitate a paradigm shift, proffering novel concepts and methodologies in resolving the practical quandaries afflicting drilling fluid plugging.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52074327 and 51991361)。
文摘Self-healing hydrogels have attracted tremendous attention in the field of oil and gas drilling and production engineering because of their excellent self-healing performance after physical damage.In this study,a series of double network self-healing(DN_(SA))hydrogels based on hydrophobic association and ionic bond were prepared for plugging pores and fractures in formations in oil and gas drilling and production engineering.The mechanical,rheological,and self-healing properties of the DN_(SA)hydrogels were investigated.Results revealed that the DN_(SA)hydrogels exhibited excellent mechanical properties with a tensile stress of 0.67 MPa and toughness of 7069 kJ/cm^(3) owing to the synergistic effect of the double network.In addition,the DN_(SA)hydrogels exhibited excellent compression resistance,notch insensitivity,and self-healing properties.The DN_(SA)-2 hydrogel was granulated and made into gel particles with different particle sizes and used as a plugging agent.The self-healing mechanism of DN_(SA)-2 hydrogel particles in fractures was explored,and it’s plugging effect on fractures of different widths and porous media of different permeabilities were investigated.Experimental results revealed that the plugging capacity of the DN_(SA)-2 hydrogel particles for a fracture with width of 5 mm and a porous medium with a permeability of 30μm^(2) was 3.45 and 4.21 MPa,respectively,which is significantly higher than those of commonly used plugging agents in the oilfield.The DN_(SA)hydrogels with excellent mechanical and self-healing properties prepared in this study will provide a new approach for applying hydrogels in oil and gas drilling and production engineering.
基金financially supported by the National Natural Science Foundation of China(Grant 52074327,51991361)the Natural Science Foundation of Shandong Province,China(ZR2020QE107)
文摘Lost circulation of drilling fluid is one of the most common engineering problems in the drilling process of fractured formations.In this study,an oil-absorbing polymer gel synthesized using compound monomers with rigid and flexible chains was applied to control the oil-based drilling fluid loss while drilling.The microstructure,oil-absorbing performance,and plugging performance the gel was investigated.A large number of dense pores on the surface of the gel were observed,which allowed the oil molecules to enter the internal space of the gel.The initial oil absorption capacity of the gel was fast,and it increased with the increase in the temperature and decrease in the particle size,reaching 20.93 g/g at140℃.At a high temperature of 140℃,the bearing pressure capacity of the gel formula containing particles of different particle sizes reached 7.6 MPa for a fracture of a width of 3 mm,showing that the oil-absorbing gel have excellent plugging performance at high temperature.Plugging mechanism of the gel was investigated through visualized fracture plugging experiments.Results show that the dynamic migratio n,particle-swelling,particle-bridging,particle-aggregation,deformation-filling,and compaction-plugging contribute to the whole lost circulation control process,reflecting that the plugging performance can be effectively enhanced by improving the aggregation and filling degrees of the gel with different particle sizes.
基金This research is financially supported by the National Natural Science Foundation of China(Grant 52074327,52288101)the Natural Science Foundation of Shandong Province,China(ZR2020QE107).
文摘The excellent mechanical properties of supramolecular gel could adapt to the complex reservoir environment and had broad application prospects in the field of oil and gas drilling and production engineering.In this paper,a supramolecular gel based on hydrophobic association and hydrogen bonding was prepared by micellar copolymerization,which could be used to plug fractures and pores in formations.Supramolecular gel was a gel network system with high performance characteristics formed by self-assembly of non-covalent bond interaction.The rheological properties,mechanical mechanics,temperature resistance and swelling ability of supramolecular gel were studied.The results showed that the supramolecular gel had a dense three-dimensional network structure with open and interconnected pore structures,which could exhibit good rheological properties and strong viscoelastic recovery ability.The mechanical properties of the supramolecular gel were excellent,it had a tensile stress of 0.703 MPa and an elongation at break of 1803%.When the compressive strain was 96%,the compressive stress could reach 14.5 MPa.Supramolecular gel also showed good temperature resistance and swelling properties.At the aging temperature of 135℃,supramolecular gels still maintained good gel strength,and it only took 12 h to reach the equilibrium swelling ratio of 35.87 in 1%NaCl solution.It was also found that supramolecular gel in low concentration saline(1%NaCl solution)showed relatively faster swelling than high concentration saline(25%NaCl solution).The swelling process of the supramolecular gel was non-Fick diffusion(typeⅡ).This indicated that the organic/inorganic permeability network was well formed.Therefore,the diffusion rate of small molecules could be guaranteed to be equal to the relaxation rate of large molecules before and after the phase transition temperature.In addition to the diffusion of water molecules,the swelling process of the supramolecular gel was also affected by the relaxation of gel network and polymer chain segment,the interaction between water molecules and polymer network and the groups of polymer network and other factors.Supramolecular gel particles could be used as plugging materials for drilling fluids,which had excellent ability to plug formation fractures and pores.The plugging ability of the supramolecular gel was up to 6.7 MPa for 0.5 mm fracture width,and 9.6 MPa for porous media with 5 mD permeability.Compared with HT-PPG gel particles commonly used in oil fields,supramolecular gel particles had better plugging ability on fractures and porous media.The development and application of supramolecular gel had far-reaching significance for promoting the functional application of polymer materials in drilling and production engineering.