期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Excellent structural stability and electrochemical properties of LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)material by surface Ni^(2+)anchoring and Cs^(+)doping
1
作者 Hongyu Tang Dongming Liu +7 位作者 Jinfu Huang Liang Zhang Yang Tang Bin Huang Yanwei Li Shunhua Xiao yiling sun Renheng Wang 《Chinese Chemical Letters》 2025年第6期699-707,共9页
The ultra-high nickel cathode material has important application prospect in power lithium-ion batteries.However,the poor structural stability and serious surface/interfacial side reactions during long cycles severely... The ultra-high nickel cathode material has important application prospect in power lithium-ion batteries.However,the poor structural stability and serious surface/interfacial side reactions during long cycles severely hinder the material's practical application.In this paper,Cs^(+)doping and polymethyl methacrylate(PMMA)coating are used to synergistically modify the NCM955 material.The results show that the corresponding discharge specific capacity of NCMCs-2@P-2 material reaches 152.02 m Ah/g at 1 C(1 C=200 m A/g)and 125.66 m Ah/g at 5 C after 300 cycles,and the capacity retention is 78.11%and72.21%,respectively.In addition,it still maintains 156.36 m Ah/g discharge specific capacity at 10 C,and these rate and cycle properties exceed those reported on ultra-high nickel cathode material.Moreover,NCMCs-2@P-2 material has higher migration energy barrier of Ni^(2+)and lower migration energy barrier of Li+than that of NCM955 material.Therefore,NCMCs-2@P-2 material has excellent electrochemical properties,which has been proved by a series of structural characterization,theoretical calculation and performance test.The synergistic enhancement of Cs^(+)doping and PMMA coating accelerates lithium ion diffusion kinetics,stabilizes crystal structure,and inhabits surface/interface side reaction. 展开更多
关键词 LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)material Cs^(+)doping PMMA coating Electrochemical performance Electrochemical mechanism
原文传递
One-time sintering process to modify xLi2MnO3(1-x)LiMO2 hollow architecture and studying their enhanced electrochemical performances 被引量:3
2
作者 Renheng Wang yiling sun +5 位作者 Kaishuai Yang Junchao Zheng Yan Li Zhengfang Qian Zhenjiang He Shengkui Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期271-279,共9页
To solve the critical problems of lithium rich cathode materials, e.g., structure instability and short cycle life, we have successfully prepared a ZrO2-coated and Zr-doping xLi2MnO3·(1–x)LiMO2 hollow architectu... To solve the critical problems of lithium rich cathode materials, e.g., structure instability and short cycle life, we have successfully prepared a ZrO2-coated and Zr-doping xLi2MnO3·(1–x)LiMO2 hollow architecture via one-time sintering process. The modified structural materials as lithium-ion cathodes present good structural stability and superior cycle performance in LIBs. The discharge capacity of the ZrO2-coated and Zr-doped hollow pristine is 220 mAh g-1 at the 20th cycle at 0.2 C(discharge capacity loss, 2.7%)and 150 m Ah g-1 at the 100 th cycle at 1 C(discharge capacity loss, 17.7%), respectively. However, hollow pristine electrode only delivers 203 m Ah g-1 at the 20 th cycle at 0.2 C and 124 mAh g-1 at the 100 th cycle at 1 C, respectively, and the corresponding to capacity retention is 92.2% and 72.8%, respectively.Diffusion coefficients of modified hollow pristine electrode are much higher than that of hollow pristine electrode after 100 cycles(approach to 1.4 times). In addition, we simulate the adsorption reaction of HF on the surface of ZrO2-coated layer by the first-principles theory. The calculations prove that the adsorption energy of HF on the surface of ZrO2-coated layer is about-1.699 e V, and the ZrO2-coated layer could protect the hollow spherical xLi2MnO3·(1–x)LiMO2 from erosion by HF. Our results would be applicable for systematic amelioration of high-performance lithium rich material for anode with the respect of practical application. 展开更多
关键词 Lithium rich cathode materials One-time sintering process Coated and doped Electrochemical performances First-principles calculations
在线阅读 下载PDF
Influence of non-uniform electric field distribution on the atmospheric pressure air dielectric barrier discharge 被引量:3
3
作者 Weisheng CUI Shuai ZHAO +3 位作者 Zhengfang QIAN yiling sun Mahmoud AL-SALIHI Xiangquan DENG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第7期78-84,共7页
The dielectric barrier discharge(DBD)in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments.In this paper,the influence of the electric field dis... The dielectric barrier discharge(DBD)in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments.In this paper,the influence of the electric field distribution on the uniformity of DBD is theoretically analyzed and experimentally verified.It is found that a certain degree of uneven electric field distributions can control the development of electron avalanches and regulate their transition to streamers in the gap.The discharge phenomena and electrical characteristics prove that an enhanced Townsend discharge can be formed in atmospheric-pressure air with a curved-plate electrode.The spectral analysis further confirms that the gas temperature of the plasma produced by the curved-plate electrode is close to room temperature,which is beneficial for industrial applications.This paper presents the relationship between the electron avalanche transition and the formation of a uniform DBD,which can provide some references for the development and applications of the DBD in the future. 展开更多
关键词 dielectric barrier discharge electric field distribution electron avalanche Townsend discharge
在线阅读 下载PDF
Influence of Ti_(3)C_(2)T_(x)(MXene)on the generation of dielectric barrier discharge in air 被引量:1
4
作者 Weisheng CUI Qiaolu LIN +7 位作者 Hongbo LI Shuai ZHAO Yunge ZHANG Yifan HUANG Shuting FAN yiling sun Zhengfang QIAN Renheng WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第11期66-73,共8页
The formation of homogeneous dielectric barrier discharge(DBD)in air is a key scientific problem and core technical problem to be solved for the application of plasmas.Here,we report the effect of two-dimensional(2D)n... The formation of homogeneous dielectric barrier discharge(DBD)in air is a key scientific problem and core technical problem to be solved for the application of plasmas.Here,we report the effect of two-dimensional(2D)nanomaterial Ti_(3)C_(2)T_(x)(Tx=-F,-O and/or-OH)on regulating the electrical discharge characteristics.The field emission and weak bound state property of Ti_(3)C_(2)T_(x)can effectively increase the seed electrons and contribute to the generation of atmospheric pressure homogeneous air DBD.The electron avalanche development for the uneven electrode structure is calculated,and the discharge mode transition is modeled.The comparative analyses of discharge phenomena validate the regulation of Ti_(3)C_(2)T_(x)on the discharge characteristics of DBD.The light emission capture and the voltage and current waveforms verify that the transition of Townsend discharge to streamer discharge is effectively inhibited.The optical emission spectra are used to characterize the plasma and confirm that it is in a non-equilibrium state and the gas temperature is at room temperature.This is the first exploration of Ti_(3)C_(2)T_(x)on the regulation of electrical discharge characteristics as far as we know.This work proves the feasibility of Ti_(3)C_(2)T_(x)as a source of seed electrons to form homogeneous DBD,establishing a preliminary foundation for promoting the application of atmospheric pressure non-equilibrium plasma. 展开更多
关键词 atmospheric pressure air plasma Townsend discharge seed electron Ti_(3)C_(2)T_(x)
在线阅读 下载PDF
Switchable hidden spin polarization and negative Poisson's ratio in two-dimensional antiferroelectric wurtzite crystals
5
作者 Zhuang Ma Jingwen Jiang +8 位作者 Gui Wang Peng Zhang yiling sun Zhengfang Qian Jiaxin Zheng Wen Xiong Fei Wang Xiuwen Zhang Pu Huang 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期72-80,共9页
Two-dimensional(2D)antiferroelectric materials have raised great research interest over the last decade.Here,we reveal a type of 2D antiferroelectric(AFE)crystal where the AFE polarization direction can be switched by... Two-dimensional(2D)antiferroelectric materials have raised great research interest over the last decade.Here,we reveal a type of 2D antiferroelectric(AFE)crystal where the AFE polarization direction can be switched by a certain degree in the 2D plane.Such 2D functional materials are realized by stacking the exfoliated wurtzite(wz)monolayers with“self-healable”nature,which host strongly coupled ferroelasticity/antiferroelectricity and benign stability.The AFE candidates,i.e.,Zn X and Cd X(X=S,Se,Te),are all semiconductors with direct bandgap atΓpoint,which harbors switchable antiferroelectricity and ferroelasticity with low transition barriers,hidden spin polarization,as well as giant in-plane negative Poisson's ratio(NPR),enabling the co-tunability of hidden spin characteristics and auxetic magnitudes via AFE switching.The 2D AFE wz crystals provide a platform to probe the interplay of 2D antiferroelectricity,ferroelasticity,NPR,and spin effects,shedding new light on the rich physics and device design in wz semiconductors. 展开更多
关键词 wurtzite crystal MULTIFERROICS hidden spin polarization negative Poisson's ratio
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部