The organic pollutants,such as quaternary ammonium compounds,in high salinity flowback water from shale gas extraction may pose a severe risk to public health.Conventional biological technologies have limited effectiv...The organic pollutants,such as quaternary ammonium compounds,in high salinity flowback water from shale gas extraction may pose a severe risk to public health.Conventional biological technologies have limited effectiveness in the treatment of high-salt wastewaters,whereas electrocatalytic oxidation has shown potential for treating organic pollutants in high-salt flowback water.This study developed a carbon nanotubes(CNTs)doped Ru/Ir oxide coated Ti electrode CNTs-(Ru_(x)Ir_(y)O_(2))/Ti,which exhibited enhanced electrocatalytic performance for the treatment of quaternary ammonium compound in high-salt wastewater compared to the control metal oxide coated Ti anode(Ru_(x)Ir_(y)O_(2))/Ti,with pseudofirst-order reaction rate constant improved from 7.36×10^(-3) to 1.12×10^(-2) min−1.Moreover,the CNTs-(Ru_(x)Ir_(y)O_(2))/Ti anode electrocatalytic oxidation system exhibited excellent cycling stability.Mechanism studies indicated that the CNTs-(Ru_(x)Ir_(y)O_(2))/Ti electrode enhanced singlet oxygen(^(1)O_(2))generation,which played a major role in pollutant degradation.Furthermore,the formation of high concentrations of HClO and H_(2)O_(2) further facilitated the generation of ^(1)O_(2).This study may provide an efficient and green technology for the treatment of organic pollutants in high-salt shale gas flowback water.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52200186 and 52070025)Chongqing Natural Science Foundation(No.CSTB2024NSCQ-MSX0407)+1 种基金the National Key Research and Development Program of China(No.2019YFC1805502)Chongqing Municipal Human Resources and Social Security Bureau(No.2309013519935095).
文摘The organic pollutants,such as quaternary ammonium compounds,in high salinity flowback water from shale gas extraction may pose a severe risk to public health.Conventional biological technologies have limited effectiveness in the treatment of high-salt wastewaters,whereas electrocatalytic oxidation has shown potential for treating organic pollutants in high-salt flowback water.This study developed a carbon nanotubes(CNTs)doped Ru/Ir oxide coated Ti electrode CNTs-(Ru_(x)Ir_(y)O_(2))/Ti,which exhibited enhanced electrocatalytic performance for the treatment of quaternary ammonium compound in high-salt wastewater compared to the control metal oxide coated Ti anode(Ru_(x)Ir_(y)O_(2))/Ti,with pseudofirst-order reaction rate constant improved from 7.36×10^(-3) to 1.12×10^(-2) min−1.Moreover,the CNTs-(Ru_(x)Ir_(y)O_(2))/Ti anode electrocatalytic oxidation system exhibited excellent cycling stability.Mechanism studies indicated that the CNTs-(Ru_(x)Ir_(y)O_(2))/Ti electrode enhanced singlet oxygen(^(1)O_(2))generation,which played a major role in pollutant degradation.Furthermore,the formation of high concentrations of HClO and H_(2)O_(2) further facilitated the generation of ^(1)O_(2).This study may provide an efficient and green technology for the treatment of organic pollutants in high-salt shale gas flowback water.