期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Evolution-guided Bayesian optimization for constrained multi-objective optimization in self-driving labs 被引量:1
1
作者 Andre K.Y.Low Flore Mekki-Berrada +8 位作者 Abhishek Gupta Aleksandr Ostudin Jiaxun Xie Eleonore Vissol-Gaudin yee-fun lim Qianxiao Li Yew Soon Ong Saif A.Khan Kedar Hippalgaonkar 《npj Computational Materials》 CSCD 2024年第1期2171-2181,共11页
The development of automated high-throughput experimental platforms has enabled fast sampling of high-dimensional decision spaces.To reach target properties efficiently,these platforms are increasingly paired with int... The development of automated high-throughput experimental platforms has enabled fast sampling of high-dimensional decision spaces.To reach target properties efficiently,these platforms are increasingly paired with intelligent experimental design.However,current optimizers show limitations in maintaining sufficient exploration/exploitation balance for problems dealing with multiple conflicting objectives and complex constraints.Here,we devise an Evolution-Guided Bayesian Optimization(EGBO)algorithm that integrates selection pressure in parallel with a q-Noisy Expected Hypervolume Improvement(qNEHVI)optimizer;this not only solves for the Pareto Front(PF)efficiently but also achieves better coverage of the PF while limiting sampling in the infeasible space. 展开更多
关键词 OPTIMIZATION driving CONSTRAINED
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部