期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sustainable Practice in Pavement Engineering through Value-Added Collective Recycling of Waste Plastic and Waste Tyre Rubber 被引量:15
1
作者 Xiong Xu Zhen Leng +5 位作者 Jingting Lan Wei Wang Jiangmiao Yu yawei bai Anand Sreeram Jing Hu 《Engineering》 SCIE EI 2021年第6期857-867,共11页
Waste plastics,such as waste polyethylene terephthalate(PET)beverage bottles and waste rubber tyres are major municipal solid wastes,which may lead to various environmental problems if they are not appropriately recyc... Waste plastics,such as waste polyethylene terephthalate(PET)beverage bottles and waste rubber tyres are major municipal solid wastes,which may lead to various environmental problems if they are not appropriately recycled.In this study,the feasibility of collectively recycling the two types of waste into performance-increasing modifiers for asphalt pavements was analyzed.This study aimed to investigate the recycling mechanisms of waste PET-derived additives under the treatment of two amines,triethylenetetramine(TETA)and ethanolamine(EA),and characterize the performances of these additives in modifying rubberized bitumen,a bitumen modified by waste tyre rubber.To this end,infrared spectroscopy and thermal analyses were carried out on the two PET-derived additives(PET–TETA and PET–EA).In addition,infrared spectroscopy,viscosity,dynamic shear rheology,and multiple stress creep recovery tests were performed on the rubberized bitumen samples modified by the two PET-derived additives.We concluded that waste PET can be chemically upcycled into functional additives,which can increase the overall performance of the rubberized bitumen.The recycling method developed in this study not only helps alleviate the landfilling problems of both waste PET plastic and scrap tyres,but also turns these wastes into value-added new materials for building durable pavements. 展开更多
关键词 Waste polyethylene terephthalate Waste tyre rubber Rubberized bitumen Recycling mechanism Sustainability
在线阅读 下载PDF
Advances in regional-scale crop growth and associated process modeling
2
作者 Wenfeng LIU yawei bai +5 位作者 Taisheng DU Mengxue LI Hong YANG Shichao CHEN Chuanbin LIANG Shaozhong KANG 《Science China Earth Sciences》 2025年第3期653-668,共16页
In the context of global change,ensuring national food security and achieving sustainable development of agricultural production systems have become major challenges worldwide.To address these issues,regional-scale cr... In the context of global change,ensuring national food security and achieving sustainable development of agricultural production systems have become major challenges worldwide.To address these issues,regional-scale crop growth and associated process(CROP-AP)models,with their robust simulation and predictive capabilities,have emerged as important tools for studying a wide range of issues relating to agricultural production at river basin,national,and even global scales.Here,we provide a systematic review of the advances of regional-scale CROP-AP models.First,regional-scale CROP-AP models are categorized based on model characteristics:statistical models,crop growth models,hydrology-crop coupling models,and ecosystem models.The origin,development,principle,structure,and application of each model type are introduced.Then,the main functions of regional-scale CROP-AP models are critically reviewed from five aspects:crop yield prediction,crop water consumption,agricultural non-point source pollution,greenhouse gas emissions,and climate change impact and responses.Finally,the future development trends and research priorities of regional-scale CROP-AP models are explored from six key perspectives:model validation and calibration,the ability to simulate the coupling of crop physiology and human activities,enhancing model scalability,multi-model ensembles,data and code sharing,and the integration of artificial intelligence.This review aims to provide comprehensive references and insights for the further development and application of large-scale,high-precision CROP-AP models. 展开更多
关键词 Regional scale Crop model Biophysical processes Model functions Global change
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部