Covalent organic frameworks(COFs), as highly tunable porous crystalline materials, have promising applications in potassium-ion batteries(PIBs) due to their abundant charge carrier transport channels and excellent str...Covalent organic frameworks(COFs), as highly tunable porous crystalline materials, have promising applications in potassium-ion batteries(PIBs) due to their abundant charge carrier transport channels and excellent structural stability. However, the excessive stacking of interlayer electron clouds makes it difficult to expose internal active sites. Strategies to design functional COFs with controllable morphology and copious active sites are promising but still challenging. Herein, by utilizing the condensation between1,3,5-triformylbenzene(TFB) and p-phenylenediamine(PPD) and using amino-modified SiO_(2) nanospheres as templates, we synthesize core-shell NH_(2)-SiO_(2)@TP-COF. Through NaOH etching of NH_(2)-SiO_(2)@TP-COF, we obtain imine-based TP-COF hollow nanospheres, which shows excellent potassium storage performance when applied to the anode for PIBs. Ex-situ analysis and density functional theory calculations reveal that C=N groups and benzenes are active sites for K^(+) storage.展开更多
VS_(4) has a unique layered atomic chain structure and has the potential to become a high-performance cathode material of magnesium-ion batteries with a high capacity and long cycle life.However,low conductivity and s...VS_(4) has a unique layered atomic chain structure and has the potential to become a high-performance cathode material of magnesium-ion batteries with a high capacity and long cycle life.However,low conductivity and sluggish Mg^(2+)diffusivity during cycling limit its practical application in large-scale energy storage.Herein,a cooperative assembly-directed strategy is adopted to synthesize VS_(4) nanorods grown in situ on carbon nanotubes(CNTs/VS_(4)).VS_(4) nanorods are tightly anchored to CNTs through V-O-C interface covalent bonds,and CNTs can enhance the electronic conductivity of the nanocomposite.In addition,the ion insertion reaction using Mg^(2+)and Mg Cl^(+)as carriers reduces the polar barrier for divalent Mg^(2+)ion transport.This rationally designed architecture promotes ion diffusion and electron transfer,thus facilitating reaction kinetics.The cooperative assembly-oriented strategy can endow CNTs/VS_(4) with excellent magnesium storage properties,including a high reversible capacity of 223.2 m Ah g^(-1)at a current density of 50 m A g^(-1),a remarkable discharge capacity of 91.8 m Ah g^(-1)even at 2,000 m A g^(-1),and an impressive capacity retention of 85.2% after 1,000 cycles at 500 m A g^(-1).Moreover,this strategy can serve as a general synthetic method for the complexation of VS_(4) with other carbon nanostructures.展开更多
基金supported by the National Natural Science Foundation of China (No. 22179063)。
文摘Covalent organic frameworks(COFs), as highly tunable porous crystalline materials, have promising applications in potassium-ion batteries(PIBs) due to their abundant charge carrier transport channels and excellent structural stability. However, the excessive stacking of interlayer electron clouds makes it difficult to expose internal active sites. Strategies to design functional COFs with controllable morphology and copious active sites are promising but still challenging. Herein, by utilizing the condensation between1,3,5-triformylbenzene(TFB) and p-phenylenediamine(PPD) and using amino-modified SiO_(2) nanospheres as templates, we synthesize core-shell NH_(2)-SiO_(2)@TP-COF. Through NaOH etching of NH_(2)-SiO_(2)@TP-COF, we obtain imine-based TP-COF hollow nanospheres, which shows excellent potassium storage performance when applied to the anode for PIBs. Ex-situ analysis and density functional theory calculations reveal that C=N groups and benzenes are active sites for K^(+) storage.
基金the support from the National Natural Science Foundation of China (22179063)the support from the Australian Research Council through the ARC Linkage Project (LP200200926)。
基金supported by the National Natural Science Foundation of China(22179063)。
文摘VS_(4) has a unique layered atomic chain structure and has the potential to become a high-performance cathode material of magnesium-ion batteries with a high capacity and long cycle life.However,low conductivity and sluggish Mg^(2+)diffusivity during cycling limit its practical application in large-scale energy storage.Herein,a cooperative assembly-directed strategy is adopted to synthesize VS_(4) nanorods grown in situ on carbon nanotubes(CNTs/VS_(4)).VS_(4) nanorods are tightly anchored to CNTs through V-O-C interface covalent bonds,and CNTs can enhance the electronic conductivity of the nanocomposite.In addition,the ion insertion reaction using Mg^(2+)and Mg Cl^(+)as carriers reduces the polar barrier for divalent Mg^(2+)ion transport.This rationally designed architecture promotes ion diffusion and electron transfer,thus facilitating reaction kinetics.The cooperative assembly-oriented strategy can endow CNTs/VS_(4) with excellent magnesium storage properties,including a high reversible capacity of 223.2 m Ah g^(-1)at a current density of 50 m A g^(-1),a remarkable discharge capacity of 91.8 m Ah g^(-1)even at 2,000 m A g^(-1),and an impressive capacity retention of 85.2% after 1,000 cycles at 500 m A g^(-1).Moreover,this strategy can serve as a general synthetic method for the complexation of VS_(4) with other carbon nanostructures.