Regulating macrophage phenotypes to reconcile the conflict between bacterial suppression and tissue regeneration is ideal for treating infectious skin wounds. Here, an injectable immunoregulatory hydrogel (SrmE20) tha...Regulating macrophage phenotypes to reconcile the conflict between bacterial suppression and tissue regeneration is ideal for treating infectious skin wounds. Here, an injectable immunoregulatory hydrogel (SrmE20) that sequentially drives macrophage phenotypic polarization (M0 to M1, then to M2) was constructed by integrating anti-inflammatory components and proinflammatory solvents. In vitro experiments demonstrated that the proinflammatory solvent ethanol stabilized the hydrogel structure, maintained the phenolic hydroxyl group activity, and achieved macrophages' proinflammatory transition (M0 to M1) to enhance antibacterial effects. With ethanol depletion, the hydrogel's cations and phenolic hydroxyl groups synergistically regulated macrophages' anti-inflammatory transition (M1 to M2) to initiate regeneration. In the anti-contraction full-thickness wound model with infection, this hydrogel effectively eliminated bacteria and even achieved anti-inflammatory M2 macrophage accumulation at three days post-surgery, accelerated angiogenesis and collagen deposition. By sequentially driving macrophage phenotypic polarization, this injectable immunoregulatory hydrogel will bring new guidance for the care and treatment of infected wounds.展开更多
In tissue engineering,bioactive materials play an important role,providing structural support,cell regulation and establishing a suitable microenvironment to promote tissue regeneration.As the main component of extrac...In tissue engineering,bioactive materials play an important role,providing structural support,cell regulation and establishing a suitable microenvironment to promote tissue regeneration.As the main component of extracellular matrix,collagen is an important natural bioactive material and it has been widely used in scientific research and clinical applications.Collagen is available from a wide range of animal origin,it can be produced by synthesis or through recombinant protein production systems.The use of pure collagen has inherent disadvantages in terms of physico-chemical properties.For this reason,a processed collagen in different ways can better match the specific requirements as biomaterial for tissue repair.Here,collagen may be used in bone/cartilage regeneration,skin regeneration,cardiovascular repair and other fields,by following different processing methods,including cross-linked collagen,complex,structured collagen,mineralized collagen,carrier and other forms,promoting the development of tissue engineering.This review summarizes a wide range of applications of collagen-based biomaterials and their recent progress in several tissue regeneration fields.Furthermore,the application prospect of bioactive materials based on collagen was outlooked,aiming at inspiring more new progress and advancements in tissue engineering research.展开更多
基金National Key R&D Project of China(No.2022YFC2401800)National Natural Science Foundation of China(32071352 and 32271419).
文摘Regulating macrophage phenotypes to reconcile the conflict between bacterial suppression and tissue regeneration is ideal for treating infectious skin wounds. Here, an injectable immunoregulatory hydrogel (SrmE20) that sequentially drives macrophage phenotypic polarization (M0 to M1, then to M2) was constructed by integrating anti-inflammatory components and proinflammatory solvents. In vitro experiments demonstrated that the proinflammatory solvent ethanol stabilized the hydrogel structure, maintained the phenolic hydroxyl group activity, and achieved macrophages' proinflammatory transition (M0 to M1) to enhance antibacterial effects. With ethanol depletion, the hydrogel's cations and phenolic hydroxyl groups synergistically regulated macrophages' anti-inflammatory transition (M1 to M2) to initiate regeneration. In the anti-contraction full-thickness wound model with infection, this hydrogel effectively eliminated bacteria and even achieved anti-inflammatory M2 macrophage accumulation at three days post-surgery, accelerated angiogenesis and collagen deposition. By sequentially driving macrophage phenotypic polarization, this injectable immunoregulatory hydrogel will bring new guidance for the care and treatment of infected wounds.
基金National Key R&D Project of China(Grant No.2018YFC1105900)National Natural Science Foundation of China(32071352 and 81860392)Sichuan University Innovation Spark Project(2018SCUH0089).
文摘In tissue engineering,bioactive materials play an important role,providing structural support,cell regulation and establishing a suitable microenvironment to promote tissue regeneration.As the main component of extracellular matrix,collagen is an important natural bioactive material and it has been widely used in scientific research and clinical applications.Collagen is available from a wide range of animal origin,it can be produced by synthesis or through recombinant protein production systems.The use of pure collagen has inherent disadvantages in terms of physico-chemical properties.For this reason,a processed collagen in different ways can better match the specific requirements as biomaterial for tissue repair.Here,collagen may be used in bone/cartilage regeneration,skin regeneration,cardiovascular repair and other fields,by following different processing methods,including cross-linked collagen,complex,structured collagen,mineralized collagen,carrier and other forms,promoting the development of tissue engineering.This review summarizes a wide range of applications of collagen-based biomaterials and their recent progress in several tissue regeneration fields.Furthermore,the application prospect of bioactive materials based on collagen was outlooked,aiming at inspiring more new progress and advancements in tissue engineering research.