MnOx-promoted Ni-based catalyst supported by ZnO was developed to selectively hydrogenate glucose into polyols in water at 523 K with a yield of 64.9%. Using glucose, sorbitol, glycerol and LA as the rawmaterials, the...MnOx-promoted Ni-based catalyst supported by ZnO was developed to selectively hydrogenate glucose into polyols in water at 523 K with a yield of 64.9%. Using glucose, sorbitol, glycerol and LA as the rawmaterials, the roles of nickel, ZnO and MnOx were investigated. The results show that nickel provided a new pathway of glucose to sorbitol and played an important role in the hydrogenation of C3 intermediates to 1,2-propanediol(1,2-PDO). The high yield of 1, 2-PDO was attributed to effective C–C bond cleavage performance of ZnO support promoted by MnOx. ZnO and MnOx contribute to the conversion of glycerol to lactic acid(LA) and LA to 1, 2-PDO, respectively. A concise pathway for hydrogenation of glucose over Ni-based catalyst was proposed.展开更多
Zr-doped-TiO2 loaded glass fiber(ZT/GF) composite photocatalysts with different Zr/Ti ratios were prepared with a sol–gel process. Zr4+can replace Ti4+in the TiO2 lattice, which is conducive to forming the anatas...Zr-doped-TiO2 loaded glass fiber(ZT/GF) composite photocatalysts with different Zr/Ti ratios were prepared with a sol–gel process. Zr4+can replace Ti4+in the TiO2 lattice, which is conducive to forming the anatase phase and reducing the calcination temperature. The glass fiber carrier was responsible for better dispersion and loading of Zr-doped-TiO2 particles, improving the applicability of the Zr-doped-TiO2. The ZT/GF photocatalysts were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), Fourier transform infrared spectroscopy(FT-IR), ultraviolet–visible spectroscopy(UV–vis) and Barrett–Joyner–Halenda(BJH). The performance of photocatalysts with different loading was evaluated in formaldehyde degradation under visible light at room temperature. ZT/GF0.2exhibited the highest activity, with a formaldehyde removal rate as high as 95.14% being observed, which is better than that of the photocatalyst particles alone. The stability of the catalyst was also tested, and ZT/GF exhibited excellent catalytic performance with 94.38%removal efficiency, even after seven uses.展开更多
A CoCe/ZSM-5 catalyst was prepared by ultrasonic-assisted impregnation for the catalytic combustion of toluene.To study the effect of Na+on catalytic performance of CoCe/ZSM-5 catalysts,a series of different Si/Al ZSM...A CoCe/ZSM-5 catalyst was prepared by ultrasonic-assisted impregnation for the catalytic combustion of toluene.To study the effect of Na+on catalytic performance of CoCe/ZSM-5 catalysts,a series of different Si/Al ZSM-5 zeolites and catalysts doped with Na were synthesized.The experimental results show that 0.71 wt%Na+can inhibit active growth,generate more active small crystal grains,and promote improvement of the catalytic activity by the grain boundary segregation block mechanism,and the catalyst with 0.71 wt%of Na shows toluene conversion of 90 vol%at 250℃.Over 0.71 wt%of Na+content will neutralize the acid centre of the catalyst,lowering the specific surface area of the catalyst and resulting in a gradual decrease in the catalytic activity.展开更多
Chemotherapy is among the limited choices approved for the treatment of hepatocellular carcinoma(HCC) at intermediate and advanced stages. Preferential and prolonged drug exposure in diseased sites is required to maxi...Chemotherapy is among the limited choices approved for the treatment of hepatocellular carcinoma(HCC) at intermediate and advanced stages. Preferential and prolonged drug exposure in diseased sites is required to maximize the therapeutic index of the drug. Here, we report an injectable supramolecular peptide hydrogel as an intraperitoneal depot for localized and sustained release of triptolide for the treatment of orthotopic HCC. We chose peptide amphiphile C16-GNNQQNYKD-OH-based nanofibers as gelators and carriers for triptolide. Sustained triptolide release from the hydrogel was achieved over 14 days in vitro, with higher accumulation in and cytotoxicity against human HCC Bel-7402 in comparison with L-02 fetal hepatocytes. After intraperitoneal injection, the hydrogel showed prolonged retention over 13 days and preferential accumulation in the liver, realizing HCC growth inhibition by99.7 ± 0.1% and animal median survival extension from 19 to 43 days, without causing noticeable pathological changes in the major organs. These results demonstrate that injectable peptide hydrogel can be a potential carrier for localized chemotherapy of HCC.展开更多
Nucleic acid drugs are highly applicable for cancer immunotherapy with promising therapeutic effects, while targeting delivery of these drugs to disease lesions remains challenging. Cationic polymeric nanoparticles ha...Nucleic acid drugs are highly applicable for cancer immunotherapy with promising therapeutic effects, while targeting delivery of these drugs to disease lesions remains challenging. Cationic polymeric nanoparticles have paved the way for efficient delivery of nucleic acid drugs, and achieved stimuli-responsive disassembly in tumor microenvironment(TME). However, TME is highly heterogeneous between individuals, and most nanocarriers lack active-control over the release of loaded nucleic acid drugs, which will definitely reduce the therapeutic efficacy. Herein, we have developed a lightcontrollable charge-reversal nanoparticle(LCCN) with controlled release of polyinosinic-polycytidylic acid [Poly(I:C)] to treat triple negative breast cancer(TNBC) by enhanced photodynamic immunotherapy. The nanoparticles keep suitably positive charge for stable loading of Poly(I:C), while rapidly reverse to negative charge after near-infrared light irradiation to release Poly(I:C). LCCN-Poly(I:C) nanoparticles trigger effective phototoxicity and immunogenic cell death on 4 T1 tumor cells, elevate antitumor immune responses and inhibit the growth of primary and abscopal 4 T1 tumors in mice. The approach provides a promising strategy for controlled release of various nucleic acid-based immune modulators, which may enhance the efficacy of photodynamic immunotherapy against TNBC.展开更多
Spherical bimetallic cobalt-lanthanum oxides were loaded on the surface of electrospun carbon fiber by simple hydrothermal method and an electrochemical sensor was successfully constructed for simultaneous detection o...Spherical bimetallic cobalt-lanthanum oxides were loaded on the surface of electrospun carbon fiber by simple hydrothermal method and an electrochemical sensor was successfully constructed for simultaneous detection of amlodipine and acetami-nophen.Carbon fiber,as an electron transport channel,is cooperated with bimetallic oxides to provide uniformly dispersed active sites and enhance the conductivity of the composite.The linear relationships between amlodipine and acetaminophen are 10-1000µM and 5-1600µM,and the detection limits are 0.86µM and 0.25µM,respectively.Furthermore,experiments reveal that the sensor exhibits good stability,and satisfactory recovery rate has been obtained in the detection of two practi-cal drugs.展开更多
Uniform, ordered mesoporous ZnCo2O4 (meso-ZnCo2O4) nanospheres were successfully synthesized using a sacrificing template method. The meso-ZnCo2O4 nanospheres were used for the first time for H2O2 biosensing and in ...Uniform, ordered mesoporous ZnCo2O4 (meso-ZnCo2O4) nanospheres were successfully synthesized using a sacrificing template method. The meso-ZnCo2O4 nanospheres were used for the first time for H2O2 biosensing and in glucose biofuel cells (GBFCs) as an enzyme mimic. The meso-ZnCo2O4 nanospheres not only exhibited excellent catalytic performance in the H2O2 sensor, achieving a high sensitivity (658.92 μA.mM-1.cm-2) and low detection limit (0.3 nM at signal-to-noise ratio (S/N) = 3), but also performed as an excellent cathode material in GBFCs, resulting in an open circuit voltage of 0.83 V, maximum power density of 0.32 mW.cm-2, and limiting current density of 1.32 mA.cm-2. The preeminent catalytic abilities to H2O2 and glucose may be associated with the large specific surface area of the mesoporous structure in addition to the intrinsic catalytic activity of ZnCo2O4. These significant findings provide a successful basis for developing methods for the supersensitive detection of H2O2 and enriching catalytic materials for biofuel cells.展开更多
An“on–off–on”fluorescence sensor was designed for rapidly and consecutively detecting 4-nitrophenol and cerium(IV)without the use of any labeling materials.The yellow carbon dots were synthesized by a simple one-s...An“on–off–on”fluorescence sensor was designed for rapidly and consecutively detecting 4-nitrophenol and cerium(IV)without the use of any labeling materials.The yellow carbon dots were synthesized by a simple one-step hydrothermal approach,and various techniques were applied to investigate the morphology,structure,and optical properties of the carbon dots.Under the optimal experimental conditions,4-nitrophenol rapidly quenched the fluorescence of carbon dots as a result of the inner filter eff ect(IFE).The fluorescence intensity of carbon dots was linear with the concentration of 4-nitrophenol(1–150μmol/L)and the limit of detection was 0.32μmol/L.The fluorescence was gradually recovered as the cerium(IV)concentration(0.5–100μmol/L)increased in CDs/4-NP,and the limit of detection was 0.16μmol/L.The sensor showed good selectivity and demonstrated high accuracy for the analysis of 4-nitrophenol and cerium(IV)in actual water samples.展开更多
基金financially supported by the National Science Foundation of China (21671132)Shanghai Science and Technology Committee(16dz1207200)the Youth Innovation Promotion Association CAS(2015231)
文摘MnOx-promoted Ni-based catalyst supported by ZnO was developed to selectively hydrogenate glucose into polyols in water at 523 K with a yield of 64.9%. Using glucose, sorbitol, glycerol and LA as the rawmaterials, the roles of nickel, ZnO and MnOx were investigated. The results show that nickel provided a new pathway of glucose to sorbitol and played an important role in the hydrogenation of C3 intermediates to 1,2-propanediol(1,2-PDO). The high yield of 1, 2-PDO was attributed to effective C–C bond cleavage performance of ZnO support promoted by MnOx. ZnO and MnOx contribute to the conversion of glycerol to lactic acid(LA) and LA to 1, 2-PDO, respectively. A concise pathway for hydrogenation of glucose over Ni-based catalyst was proposed.
基金financially supported by the Project of Science and Technology Department of Jiangsu Province (BE2016769)the Natural Science Foundation of China (No. 51608261)+2 种基金Six talent peaks project in Jiangsu Province (2016)Open fund by Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials (KFK1503)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Zr-doped-TiO2 loaded glass fiber(ZT/GF) composite photocatalysts with different Zr/Ti ratios were prepared with a sol–gel process. Zr4+can replace Ti4+in the TiO2 lattice, which is conducive to forming the anatase phase and reducing the calcination temperature. The glass fiber carrier was responsible for better dispersion and loading of Zr-doped-TiO2 particles, improving the applicability of the Zr-doped-TiO2. The ZT/GF photocatalysts were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), Fourier transform infrared spectroscopy(FT-IR), ultraviolet–visible spectroscopy(UV–vis) and Barrett–Joyner–Halenda(BJH). The performance of photocatalysts with different loading was evaluated in formaldehyde degradation under visible light at room temperature. ZT/GF0.2exhibited the highest activity, with a formaldehyde removal rate as high as 95.14% being observed, which is better than that of the photocatalyst particles alone. The stability of the catalyst was also tested, and ZT/GF exhibited excellent catalytic performance with 94.38%removal efficiency, even after seven uses.
基金Project supported by Science and Technology Department of Jiangsu Province(BE2016769).
文摘A CoCe/ZSM-5 catalyst was prepared by ultrasonic-assisted impregnation for the catalytic combustion of toluene.To study the effect of Na+on catalytic performance of CoCe/ZSM-5 catalysts,a series of different Si/Al ZSM-5 zeolites and catalysts doped with Na were synthesized.The experimental results show that 0.71 wt%Na+can inhibit active growth,generate more active small crystal grains,and promote improvement of the catalytic activity by the grain boundary segregation block mechanism,and the catalyst with 0.71 wt%of Na shows toluene conversion of 90 vol%at 250℃.Over 0.71 wt%of Na+content will neutralize the acid centre of the catalyst,lowering the specific surface area of the catalyst and resulting in a gradual decrease in the catalytic activity.
基金Superiority Discipling Construction Project of Jiangsu Province:Nursing[2018](87)Special Project of Philosophy and Social Science Development of Nanjing Medical University(2019ZSZ003).
基金the National Natural Science Foundation of China (Nos. 81690265, 31870995, 81671808 and 81630052)Youth Innovation Promotion Association of the Chinese Academy of Sciences (2017335, China)SA-SIBS Scholarship Program for financial support (China)
文摘Chemotherapy is among the limited choices approved for the treatment of hepatocellular carcinoma(HCC) at intermediate and advanced stages. Preferential and prolonged drug exposure in diseased sites is required to maximize the therapeutic index of the drug. Here, we report an injectable supramolecular peptide hydrogel as an intraperitoneal depot for localized and sustained release of triptolide for the treatment of orthotopic HCC. We chose peptide amphiphile C16-GNNQQNYKD-OH-based nanofibers as gelators and carriers for triptolide. Sustained triptolide release from the hydrogel was achieved over 14 days in vitro, with higher accumulation in and cytotoxicity against human HCC Bel-7402 in comparison with L-02 fetal hepatocytes. After intraperitoneal injection, the hydrogel showed prolonged retention over 13 days and preferential accumulation in the liver, realizing HCC growth inhibition by99.7 ± 0.1% and animal median survival extension from 19 to 43 days, without causing noticeable pathological changes in the major organs. These results demonstrate that injectable peptide hydrogel can be a potential carrier for localized chemotherapy of HCC.
基金Financial supports from the National Natural Science Foundation of China(81903548,81690265,81803444,81521005 and 32070927)the Youth Innovation Promotion Association of CAS(2019283)+3 种基金the Strategic Priority Research Program of CAS(XDA12050307)Shandong Provincial Natural Science Foundation(ZR2019ZD25)the International Partnership Program of CAS(153631KYSB20190013)the Shanghai Sailing Program(19YF1457300)。
文摘Nucleic acid drugs are highly applicable for cancer immunotherapy with promising therapeutic effects, while targeting delivery of these drugs to disease lesions remains challenging. Cationic polymeric nanoparticles have paved the way for efficient delivery of nucleic acid drugs, and achieved stimuli-responsive disassembly in tumor microenvironment(TME). However, TME is highly heterogeneous between individuals, and most nanocarriers lack active-control over the release of loaded nucleic acid drugs, which will definitely reduce the therapeutic efficacy. Herein, we have developed a lightcontrollable charge-reversal nanoparticle(LCCN) with controlled release of polyinosinic-polycytidylic acid [Poly(I:C)] to treat triple negative breast cancer(TNBC) by enhanced photodynamic immunotherapy. The nanoparticles keep suitably positive charge for stable loading of Poly(I:C), while rapidly reverse to negative charge after near-infrared light irradiation to release Poly(I:C). LCCN-Poly(I:C) nanoparticles trigger effective phototoxicity and immunogenic cell death on 4 T1 tumor cells, elevate antitumor immune responses and inhibit the growth of primary and abscopal 4 T1 tumors in mice. The approach provides a promising strategy for controlled release of various nucleic acid-based immune modulators, which may enhance the efficacy of photodynamic immunotherapy against TNBC.
基金The authors thank the National Natural Science Foundation of China(No.21671132).
文摘Spherical bimetallic cobalt-lanthanum oxides were loaded on the surface of electrospun carbon fiber by simple hydrothermal method and an electrochemical sensor was successfully constructed for simultaneous detection of amlodipine and acetami-nophen.Carbon fiber,as an electron transport channel,is cooperated with bimetallic oxides to provide uniformly dispersed active sites and enhance the conductivity of the composite.The linear relationships between amlodipine and acetaminophen are 10-1000µM and 5-1600µM,and the detection limits are 0.86µM and 0.25µM,respectively.Furthermore,experiments reveal that the sensor exhibits good stability,and satisfactory recovery rate has been obtained in the detection of two practi-cal drugs.
基金Thank the National Natural Science Foundation of China (Nos. 21671132 and 81301345) for the supports. Thank Analysis and Determination Center, Shanghai University for the support.
文摘Uniform, ordered mesoporous ZnCo2O4 (meso-ZnCo2O4) nanospheres were successfully synthesized using a sacrificing template method. The meso-ZnCo2O4 nanospheres were used for the first time for H2O2 biosensing and in glucose biofuel cells (GBFCs) as an enzyme mimic. The meso-ZnCo2O4 nanospheres not only exhibited excellent catalytic performance in the H2O2 sensor, achieving a high sensitivity (658.92 μA.mM-1.cm-2) and low detection limit (0.3 nM at signal-to-noise ratio (S/N) = 3), but also performed as an excellent cathode material in GBFCs, resulting in an open circuit voltage of 0.83 V, maximum power density of 0.32 mW.cm-2, and limiting current density of 1.32 mA.cm-2. The preeminent catalytic abilities to H2O2 and glucose may be associated with the large specific surface area of the mesoporous structure in addition to the intrinsic catalytic activity of ZnCo2O4. These significant findings provide a successful basis for developing methods for the supersensitive detection of H2O2 and enriching catalytic materials for biofuel cells.
基金National Natural Science Foundation of China(22274096 and 22272119)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)+2 种基金the Science and Technology Committee of Shanghai Municipality(2022-4-ZD-03)the Shanghai Pilot Program for Basic Researchthe Fundamental Research Funds for the Central Universities。
文摘An“on–off–on”fluorescence sensor was designed for rapidly and consecutively detecting 4-nitrophenol and cerium(IV)without the use of any labeling materials.The yellow carbon dots were synthesized by a simple one-step hydrothermal approach,and various techniques were applied to investigate the morphology,structure,and optical properties of the carbon dots.Under the optimal experimental conditions,4-nitrophenol rapidly quenched the fluorescence of carbon dots as a result of the inner filter eff ect(IFE).The fluorescence intensity of carbon dots was linear with the concentration of 4-nitrophenol(1–150μmol/L)and the limit of detection was 0.32μmol/L.The fluorescence was gradually recovered as the cerium(IV)concentration(0.5–100μmol/L)increased in CDs/4-NP,and the limit of detection was 0.16μmol/L.The sensor showed good selectivity and demonstrated high accuracy for the analysis of 4-nitrophenol and cerium(IV)in actual water samples.