In climacteric fruits,the role of ethylene in promoting ripening process and its molecular regulatory mechanisms have been well elucidated.However,research into ethylene's roles in non-climacteric fruits has only ...In climacteric fruits,the role of ethylene in promoting ripening process and its molecular regulatory mechanisms have been well elucidated.However,research into ethylene's roles in non-climacteric fruits has only advanced in recent years,largely because these fruits produce much less ethylene than climacteric fruits.Consequently,reports on its molecular regulatory involvement are still limited.Grape(Vitis vinifera L.),one of the most economically valuable fruits,is regarded as a classical non-climacteric fruit.In this study,an enzyme participating in the last step of ethylene biosynthesis,VvACO1,has been identified as a key enzyme controlling ethylene release in grape fruits(Vitis vinifera‘Jingyan’and‘Red Balado’)using correlation analysis and enzymatic experiments.The transcriptional regulation of VvACO1 was investigated by integrating multiple methods such as DNA pull-down assays,co-expression analysis,dual luciferase reporting system,yeast one-hybrid assays,and transgenic experiments.Our findings revealed that the upregulation of VvACO1 in grape fruits was primarily caused by the removal of transcriptional inhibition.Remarkably,seven transcription factors(TFs)were identified as inhibitors of VvACO1,including VvHY5 from bZIP family,VvWIP2 from C2H2 family,VvBLH1 from Homeobox family,VvAG1 and VvCMB1 from MADS-box family,VvASIL1 and VvASIL2 from Trihelix family.These seven TFs were located in nuclei and exhibited transcriptional inhibition activity.Notably,VvAG1 and VvASIL2 could inhibit VvACO1 expression when overexpressed in grape leaves.Our findings provided theoretical clues for differences of ethylene release regulation between climacteric and non-climacteric fruits,also the identified seven TFs could be potential targets for grape molecular breeding.展开更多
Quantumdot inks(QDIs)represent an emerging functionalmaterial that integrates nanotechnology and fluid engineering,demonstrating significant application potential in flexible optoelectronics and high-color gamut displ...Quantumdot inks(QDIs)represent an emerging functionalmaterial that integrates nanotechnology and fluid engineering,demonstrating significant application potential in flexible optoelectronics and high-color gamut displays.Their wide applicability is due to a unique quantum confinement effect that enables precise spectral tunability and solution-processable properties.However,the complex fluid dynamics associated with QDIs at micro-/nano-scales severely limit the accuracy of inkjet printing and pattern deposition.This review systematically addresses recent advances in the hydrodynamics of QDIs,establishing scientific mechanisms and key technical breakthroughs from an interdisciplinary perspective.Current research has focused on three optimization directions:(1)regulating ligand structures to enhance colloidal stability,flow consistency,and anti-shear performance while mitigating nanoparticle aggregation;(2)incorporating low-viscosity or high-volatility solvents and surface tension modifiers to modify droplet dynamic characteristics and suppress the“coffee-ring”effect;(3)integrating advanced technologies such as electrohydrodynamic jetting and microfluidic targeted deposition to achieve submicron pattern resolution and high film uniformity,expanding adaptability in flexible electronics,biosensing,and anti-counterfeiting printing.A comparison of current technical routes and critical performance indicators has identified the dominant variables that influence QDI macroscopic/microscopic properties.A comprehensive analytical framework is presented which spans material structure,rheological behavior,manufacturing processes,and functional characteristics.Moreover,a proposed engineering‘structure–parameter–behavior–performance’serves to link core–shell structure,formulation parameters(e.g.,viscosity and surface tension),fluidic behavior(e.g.,shear thinning and Marangoni flow),and device performance(e.g.,resolution and photoluminescence efficiency).The findings provide theoretical support and decision-making guidance for the large-scale application and interdisciplinary expansion of QDIs.展开更多
The development of clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9(CRISPR/Cas9)system has revolutionized genome editing and plant breeding.Applications of CRISPR/Cas9 technology i...The development of clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9(CRISPR/Cas9)system has revolutionized genome editing and plant breeding.Applications of CRISPR/Cas9 technology in fruit crops,including grapevine,enable precise improvement of agronomically important traits.In this review,we first describe genome editing based on the most widely used CRISPR/Cas9 system and recently developed CRISPR technologies.We then focus on applications of CRISPR/Cas9 in improvement of disease resistance,optimization of CRISPR/Cas9 systems,multiplex genome editing and off-target effect analysis in grapevine.We also discuss the challenges facing genome editing that should be overcome to realize the potential of CRISPR technology in grapevine.Finally,we highlight possible future experimental considerations for more precise and efficient genome editing in grapevine.展开更多
This article reports our explorations for solving interface problems of the Helmholtz equation by immersed finite elements (IFE) on interface independent meshes. Two IFE methods are investigated: the partially penaliz...This article reports our explorations for solving interface problems of the Helmholtz equation by immersed finite elements (IFE) on interface independent meshes. Two IFE methods are investigated: the partially penalized IFE (PPIFE) and discontinuous Galerkin IFE (DGIFE) methods. Optimal convergence rates are observed for these IFE methods once the mesh size is smaller than the optimal mesh size which is mainly dictated by the wave number. Numerical experiments also suggest that higher degree IFE methods are advantageous because of their larger optimal mesh size and higher convergence rates.展开更多
In this paper,we introduce new stable mixed finite elements of any order on polytopal mesh for solving second-order elliptic problem.We establish optimal order error estimates for velocity and super convergence for pr...In this paper,we introduce new stable mixed finite elements of any order on polytopal mesh for solving second-order elliptic problem.We establish optimal order error estimates for velocity and super convergence for pressure.Numerical experiments are conducted for our mixed elements of different orders on 2D and 3D spaces that confirm the theory.展开更多
This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuous Galerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient. A discontinuous ...This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuous Galerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient. A discontinuous bihnear IFE space is constructed and applied to both the symmetric and nonsymmetric interior penalty DG formulations. The new methods can solve an interface problem on a Cartesian mesh independent of the interface with local refinement at any locations needed even if the interface has a nontrivial geometry. Numerical examples are provided to show features of these methods.展开更多
This article extends the finite element method of lines to a parabolic initial boundary value problem whose diffusion coefficient is discontinuous across an interface that changes with respect to time.The method prese...This article extends the finite element method of lines to a parabolic initial boundary value problem whose diffusion coefficient is discontinuous across an interface that changes with respect to time.The method presented here uses immersed finite element(IFE)functions for the discretization in spatial variables that can be carried out over a fixedmesh(such as a Cartesianmesh if desired),and this featuremakes it possible to reduce the parabolic equation to a system of ordinary differential equations(ODE)through the usual semi-discretization procedure.Therefore,with a suitable choice of the ODE solver,this method can reliably and efficiently solve a parabolic moving interface problem over a fixed structured(Cartesian)mesh.Numerical examples are presented to demonstrate features of this new method.展开更多
This article is to discuss the bilinear and linear immersed finite element(IFE)solutions generated from the algebraic multigrid solver for both stationary and moving interface problems.For the numerical methods based ...This article is to discuss the bilinear and linear immersed finite element(IFE)solutions generated from the algebraic multigrid solver for both stationary and moving interface problems.For the numerical methods based on finite difference formulation and a structured mesh independent of the interface,the stiffness matrix of the linear system is usually not symmetric positive-definite,which demands extra efforts to design efficient multigrid methods.On the other hand,the stiffness matrix arising from the IFE methods are naturally symmetric positive-definite.Hence the IFE-AMG algorithm is proposed to solve the linear systems of the bilinear and linear IFE methods for both stationary and moving interface problems.The numerical examples demonstrate the features of the proposed algorithms,including the optimal convergence in both L 2 and semi-H1 norms of the IFE-AMG solutions,the high efficiency with proper choice of the components and parameters of AMG,the influence of the tolerance and the smoother type of AMG on the convergence of the IFE solutions for the interface problems,and the relationship between the cost and the moving interface location.展开更多
To the Editor,Recent studies reported that lncRNA MIR205HG expression is associated with sensitivity to anti-epidermal growth factor receptor(EGFR)drug in lung cancer cells.However,few clinical studies reported the ro...To the Editor,Recent studies reported that lncRNA MIR205HG expression is associated with sensitivity to anti-epidermal growth factor receptor(EGFR)drug in lung cancer cells.However,few clinical studies reported the role of this molecule in breast cancer,particularly in the neoadjuvant setting.In this study,we explored the clinical significance of MIR205HG expression with its predictive and prognostic value for patients with locally advanced breast cancer.展开更多
A special session on Numerical Analysis,in honor of Professor Graeme Fairweather’s 70th birthday This special issue of Advances in Applied Mathematics and Mechanics consists of a se-lection of invited and contributed...A special session on Numerical Analysis,in honor of Professor Graeme Fairweather’s 70th birthday This special issue of Advances in Applied Mathematics and Mechanics consists of a se-lection of invited and contributed papers that were presented in a Special Session of the 8th International Conference on Scientific Computing and Applications that was held at the University of Nevada,Las Vegas,from April 1 to 4,2012.The Special Session was organized in order to celebrate the 70th birthday of Professor Graeme Fairweather.展开更多
In this paper,the time-dependent Maxwell’s equations used to modeling wave propagation in dispersive lossy bi-isotropic media are investigated.Existence and uniqueness of the modeling equations are proved.Two fully d...In this paper,the time-dependent Maxwell’s equations used to modeling wave propagation in dispersive lossy bi-isotropic media are investigated.Existence and uniqueness of the modeling equations are proved.Two fully discrete finite element schemes are proposed,and their practical implementation and stability are discussed.展开更多
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.32025032 and 32202415)the Agricultural Breeding Project of Ningxia Hui Autonomous Region(Grant No.NXNYYZ20210104)the National Key Research and Development Program of China(Grant No.2022YFE0116400).
文摘In climacteric fruits,the role of ethylene in promoting ripening process and its molecular regulatory mechanisms have been well elucidated.However,research into ethylene's roles in non-climacteric fruits has only advanced in recent years,largely because these fruits produce much less ethylene than climacteric fruits.Consequently,reports on its molecular regulatory involvement are still limited.Grape(Vitis vinifera L.),one of the most economically valuable fruits,is regarded as a classical non-climacteric fruit.In this study,an enzyme participating in the last step of ethylene biosynthesis,VvACO1,has been identified as a key enzyme controlling ethylene release in grape fruits(Vitis vinifera‘Jingyan’and‘Red Balado’)using correlation analysis and enzymatic experiments.The transcriptional regulation of VvACO1 was investigated by integrating multiple methods such as DNA pull-down assays,co-expression analysis,dual luciferase reporting system,yeast one-hybrid assays,and transgenic experiments.Our findings revealed that the upregulation of VvACO1 in grape fruits was primarily caused by the removal of transcriptional inhibition.Remarkably,seven transcription factors(TFs)were identified as inhibitors of VvACO1,including VvHY5 from bZIP family,VvWIP2 from C2H2 family,VvBLH1 from Homeobox family,VvAG1 and VvCMB1 from MADS-box family,VvASIL1 and VvASIL2 from Trihelix family.These seven TFs were located in nuclei and exhibited transcriptional inhibition activity.Notably,VvAG1 and VvASIL2 could inhibit VvACO1 expression when overexpressed in grape leaves.Our findings provided theoretical clues for differences of ethylene release regulation between climacteric and non-climacteric fruits,also the identified seven TFs could be potential targets for grape molecular breeding.
基金supported by the Shenzhen Polytechnic Research Fund(6023310025K)Post-doctoral Later-stage Foundation Project of Shenzhen Polytechnic(6023271017K)Horizontal Technology Development Project(6024260101K).
文摘Quantumdot inks(QDIs)represent an emerging functionalmaterial that integrates nanotechnology and fluid engineering,demonstrating significant application potential in flexible optoelectronics and high-color gamut displays.Their wide applicability is due to a unique quantum confinement effect that enables precise spectral tunability and solution-processable properties.However,the complex fluid dynamics associated with QDIs at micro-/nano-scales severely limit the accuracy of inkjet printing and pattern deposition.This review systematically addresses recent advances in the hydrodynamics of QDIs,establishing scientific mechanisms and key technical breakthroughs from an interdisciplinary perspective.Current research has focused on three optimization directions:(1)regulating ligand structures to enhance colloidal stability,flow consistency,and anti-shear performance while mitigating nanoparticle aggregation;(2)incorporating low-viscosity or high-volatility solvents and surface tension modifiers to modify droplet dynamic characteristics and suppress the“coffee-ring”effect;(3)integrating advanced technologies such as electrohydrodynamic jetting and microfluidic targeted deposition to achieve submicron pattern resolution and high film uniformity,expanding adaptability in flexible electronics,biosensing,and anti-counterfeiting printing.A comparison of current technical routes and critical performance indicators has identified the dominant variables that influence QDI macroscopic/microscopic properties.A comprehensive analytical framework is presented which spans material structure,rheological behavior,manufacturing processes,and functional characteristics.Moreover,a proposed engineering‘structure–parameter–behavior–performance’serves to link core–shell structure,formulation parameters(e.g.,viscosity and surface tension),fluidic behavior(e.g.,shear thinning and Marangoni flow),and device performance(e.g.,resolution and photoluminescence efficiency).The findings provide theoretical support and decision-making guidance for the large-scale application and interdisciplinary expansion of QDIs.
基金This work is funded by grants from the National Natural Science Foundation of China(32001994)Agricultural Breeding Project of Ningxia Hui Autonomous Region(NXNYYZ20210104).
文摘The development of clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9(CRISPR/Cas9)system has revolutionized genome editing and plant breeding.Applications of CRISPR/Cas9 technology in fruit crops,including grapevine,enable precise improvement of agronomically important traits.In this review,we first describe genome editing based on the most widely used CRISPR/Cas9 system and recently developed CRISPR technologies.We then focus on applications of CRISPR/Cas9 in improvement of disease resistance,optimization of CRISPR/Cas9 systems,multiplex genome editing and off-target effect analysis in grapevine.We also discuss the challenges facing genome editing that should be overcome to realize the potential of CRISPR technology in grapevine.Finally,we highlight possible future experimental considerations for more precise and efficient genome editing in grapevine.
文摘This article reports our explorations for solving interface problems of the Helmholtz equation by immersed finite elements (IFE) on interface independent meshes. Two IFE methods are investigated: the partially penalized IFE (PPIFE) and discontinuous Galerkin IFE (DGIFE) methods. Optimal convergence rates are observed for these IFE methods once the mesh size is smaller than the optimal mesh size which is mainly dictated by the wave number. Numerical experiments also suggest that higher degree IFE methods are advantageous because of their larger optimal mesh size and higher convergence rates.
基金supported in part by the National Science Foundation Grant DMS-1620016supported in parts by HKSAR grant Q81Q and JRI of The Hong Kong Polytechnic University.
文摘In this paper,we introduce new stable mixed finite elements of any order on polytopal mesh for solving second-order elliptic problem.We establish optimal order error estimates for velocity and super convergence for pressure.Numerical experiments are conducted for our mixed elements of different orders on 2D and 3D spaces that confirm the theory.
基金supported by NSF grant DMS-0713763the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU 501709)the AMSS-PolyU Joint Research Institute for Engineering and Management Mathematics, and NSERC (Canada)
文摘This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuous Galerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient. A discontinuous bihnear IFE space is constructed and applied to both the symmetric and nonsymmetric interior penalty DG formulations. The new methods can solve an interface problem on a Cartesian mesh independent of the interface with local refinement at any locations needed even if the interface has a nontrivial geometry. Numerical examples are provided to show features of these methods.
基金This work is partially supported by NSF grant DMS-1016313,GRF grant of Hong Kong(Project No.PolyU 501709),AMA-JRI of PolyU,Polyu grant No.5020/10P and NSERC(Canada).
文摘This article extends the finite element method of lines to a parabolic initial boundary value problem whose diffusion coefficient is discontinuous across an interface that changes with respect to time.The method presented here uses immersed finite element(IFE)functions for the discretization in spatial variables that can be carried out over a fixedmesh(such as a Cartesianmesh if desired),and this featuremakes it possible to reduce the parabolic equation to a system of ordinary differential equations(ODE)through the usual semi-discretization procedure.Therefore,with a suitable choice of the ODE solver,this method can reliably and efficiently solve a parabolic moving interface problem over a fixed structured(Cartesian)mesh.Numerical examples are presented to demonstrate features of this new method.
基金supported by DOE grant DE-FE0009843National Natural Science Foundation of China(11175052)GRF of HKSAR#501012 and NSERC(Canada).
文摘This article is to discuss the bilinear and linear immersed finite element(IFE)solutions generated from the algebraic multigrid solver for both stationary and moving interface problems.For the numerical methods based on finite difference formulation and a structured mesh independent of the interface,the stiffness matrix of the linear system is usually not symmetric positive-definite,which demands extra efforts to design efficient multigrid methods.On the other hand,the stiffness matrix arising from the IFE methods are naturally symmetric positive-definite.Hence the IFE-AMG algorithm is proposed to solve the linear systems of the bilinear and linear IFE methods for both stationary and moving interface problems.The numerical examples demonstrate the features of the proposed algorithms,including the optimal convergence in both L 2 and semi-H1 norms of the IFE-AMG solutions,the high efficiency with proper choice of the components and parameters of AMG,the influence of the tolerance and the smoother type of AMG on the convergence of the IFE solutions for the interface problems,and the relationship between the cost and the moving interface location.
基金The authors disclosed receipt of the following financial support for the research,authorship,and/or publication of this article:This work was supported by Shanghai Natural Science Foundation(No.19ZR1431100)Clinical Research Plan of Shanghai Hospital Development Center(No.SHDC2020CR3003A,16CR3065B,12016231)+6 种基金Shanghai“Rising Stars of Medical Talent”Youth Development Program for Youth Medical Talents-Specialist Program(No.2018-15)Shanghai“Rising Stars of Medical Talent”Youth Development Program for Outstanding Youth Medical Talents(No.2018-16)Shanghai Collaborative Innovation Center for Translational Medicine(No.TM201908)Multidisciplinary Cross Research Foundation of Shanghai Jiao Tong University(No.YG2017QN49,ZH2018QNA42,YG2019QNA28)Nurturing Fund of Renji Hospital(No.PYMDT-002,PY2018-IIC-01,PY2018-III-15,PYIII20-09)Science and Technology Commission of Shanghai Municipality(No.20DZ2201600,15JC1402700)Shanghai Municipal Key Clinical Specialty.
文摘To the Editor,Recent studies reported that lncRNA MIR205HG expression is associated with sensitivity to anti-epidermal growth factor receptor(EGFR)drug in lung cancer cells.However,few clinical studies reported the role of this molecule in breast cancer,particularly in the neoadjuvant setting.In this study,we explored the clinical significance of MIR205HG expression with its predictive and prognostic value for patients with locally advanced breast cancer.
文摘A special session on Numerical Analysis,in honor of Professor Graeme Fairweather’s 70th birthday This special issue of Advances in Applied Mathematics and Mechanics consists of a se-lection of invited and contributed papers that were presented in a Special Session of the 8th International Conference on Scientific Computing and Applications that was held at the University of Nevada,Las Vegas,from April 1 to 4,2012.The Special Session was organized in order to celebrate the 70th birthday of Professor Graeme Fairweather.
基金This work was supported by National Science Foundation grant DMS-0810896,NSFC project 11271310in part by the NSFC Key Project 11031006 and Research Grants Council of Hong Kong and NSERC(Canada).
文摘In this paper,the time-dependent Maxwell’s equations used to modeling wave propagation in dispersive lossy bi-isotropic media are investigated.Existence and uniqueness of the modeling equations are proved.Two fully discrete finite element schemes are proposed,and their practical implementation and stability are discussed.