期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A novel triple periodic minimal surface-like plate lattice and its data-driven optimization method for superior mechanical properties 被引量:2
1
作者 Yanda WANG yanping lian +2 位作者 Zhidong WANG Chunpeng WANG Daining FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期217-238,共22页
Lattice structures can be designed to achieve unique mechanical properties and have attracted increasing attention for applications in high-end industrial equipment,along with the advances in additive manufacturing(AM... Lattice structures can be designed to achieve unique mechanical properties and have attracted increasing attention for applications in high-end industrial equipment,along with the advances in additive manufacturing(AM)technologies.In this work,a novel design of plate lattice structures described by a parametric model is proposed to enrich the design space of plate lattice structures with high connectivity suitable for AM processes.The parametric model takes the basic unit of the triple periodic minimal surface(TPMS)lattice as a skeleton and adopts a set of generation parameters to determine the plate lattice structure with different topologies,which takes the advantages of both plate lattices for superior specific mechanical properties and TPMS lattices for high connectivity,and therefore is referred to as a TPMS-like plate lattice(TLPL).Furthermore,a data-driven shape optimization method is proposed to optimize the TLPL structure for maximum mechanical properties with or without the isotropic constraints.In this method,the genetic algorithm for the optimization is utilized for global search capability,and an artificial neural network(ANN)model for individual fitness estimation is integrated for high efficiency.A set of optimized TLPLs at different relative densities are experimentally validated by the selective laser melting(SLM)fabricated samples.It is confirmed that the optimized TLPLs could achieve elastic isotropy and have superior stiffness over other isotropic lattice structures. 展开更多
关键词 lattice structure triple periodic minimal surface(TPMS) plate lattice structural optimization machine learning
在线阅读 下载PDF
Enriched reproducing kernel particle method for fractional advection–diffusion equation 被引量:1
2
作者 Yuping Ying yanping lian +1 位作者 Shaoqiang Tang Wing Kam Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第3期515-527,共13页
The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modele... The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advectiondiffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach. 展开更多
关键词 Meshfree method Fractional calulus Enriched reproducing kernel Advection-diffusion equation Fractional-order basis
在线阅读 下载PDF
Coupled Shell-Material Point Method for Bird Strike Simulation 被引量:1
3
作者 Bo Wu Zhenpeng Chen +2 位作者 Xiong Zhang Yan Liu yanping lian 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第1期1-18,共18页
In a bird strike, the bird undergoes large deformation like flows; while most part of the structure is in small deformation, the region near the impact point may experience large deformations, even fail. This paper de... In a bird strike, the bird undergoes large deformation like flows; while most part of the structure is in small deformation, the region near the impact point may experience large deformations, even fail. This paper develops a coupled shell-material point method (CSMPM) for bird strike simulation, in which the bird is modeled by the material point method (MPM) and the aircraft structure is modeled by the Belytschko-Lin-Tsay shell element. The interaction between the bird and the structure is handled by a particle-to-surface contact algorithm. The distorted and failed shell elements will be eroded if a certain criterion is reached. The proposed CSMPM takes full advantages of both the finite element method and the MPM for bird strike simulation and is validated by several numerical examples. 展开更多
关键词 Bird strike simulation Material point method Shell element COUPLING Adaptiveconversion
原文传递
Coupling between finite element method and material point method for problems with extreme deformation 被引量:2
4
作者 yanping lian Xiong Zhang Yan Liu 《Theoretical & Applied Mechanics Letters》 2012年第2期15-18,共4页
As a Lagrangian meshless method, the material point method (MPM) is suitable for dynamic problems with extreme deformation, but its efficiency and accuracy are not as good as that of the finite element method (FEM... As a Lagrangian meshless method, the material point method (MPM) is suitable for dynamic problems with extreme deformation, but its efficiency and accuracy are not as good as that of the finite element method (FEM) for small deformation problems. Therefore, an algorithm for the coupling of FEM and MPM is proposed to take advantages of both methods. Furthermore, a conversion scheme of elements to particles is developed. Hence, the material domain is firstly discretized by finite elements, and then the distorted elements are automatically converted into MPM particles to avoid element entanglement. The interaction between finite elements and MPM particles is implemented based on the background grid in MPM framework. Numerical results are in good agreement with that of both FEM and MPM 展开更多
关键词 material point method coupling method conversion scheme PENETRATION LANDSLIDE
在线阅读 下载PDF
Modeling process-structure-property relationships for additive manufacturing
5
作者 Wentao YAN Stephen LIN +7 位作者 Orion L. KAFKA Cheng YU Zeliang LIU yanping lian Sarah WOLFF Jian CAO Gregory J. WAGNER Wing Kam LIU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2018年第4期482-492,共11页
This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of desig... This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the process- structure relationship, the multi-scale multi-physics pro- cess modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a high- efficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing. 展开更多
关键词 additive manufacturing thermal fluid flow data mining material modeling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部