Nanocellulose has served as an eye-catching nanomaterial for constructing advanced functional devices with renewability,light weight,flexibility,and environmental friendliness.In this study,Co_(3)O_(4)/graphene/cellul...Nanocellulose has served as an eye-catching nanomaterial for constructing advanced functional devices with renewability,light weight,flexibility,and environmental friendliness.In this study,Co_(3)O_(4)/graphene/cellulose nanofiber(CNF)flexible composite films,in which the CNF acted as a spacer for the graphene,were prepared via a facile and scalable vacuum filtration method.The effects of the CNF on the microstructure,hydrophilicity,thermal stability,tensile strength,surface resistance,and electrochemical performance of the Co_(3)O_(4)/graphene/CNF composite films were systematically investigated.The results showed that the synergistic interaction of the CNF and graphene substantially improved the overall properties of the Co_(3)O_(4)/graphene/CNF composite films,particularly their hydrophilicity and tensile strength.Meanwhile,Co_(3)O_(4)/graphene/CNF composite films with a CNF content of 4%appeared to have the optimal electrochemical performance,with an area specific capacitance of 56 mF/cm^(2) and prominent capacitance retention of 95.6%at a current density of 1 A/g after 1000 cycles.This work demonstrated that the prepared Co_(3)O_(4)/graphene/CNF flexible composite films have great application potential in the field of flexible energy storage devices.展开更多
Imparting electro-conductive properties to nanocellulose-based products may render them suitable for applications in electronics, optoelectronics, and energy storage devices. In the present work, an electro...Imparting electro-conductive properties to nanocellulose-based products may render them suitable for applications in electronics, optoelectronics, and energy storage devices. In the present work, an electro-conductive nanocrystalline cellulose (NCC) film filled with TiO2-reduced-graphene oxide (TiO2-RGO) was developed. Initially, graphene oxide (GO) was prepared using the modified Hummers method and thereafter photocatalytically reduced using TiO2 as a catalyst. Subsequently, an electro-conductive NCC film was prepared via vacuum filtration with the as-prepared TiO2-RGO nanocomposite as a functional filler. The TiO2-RGO nanocomposite and the NCC/TiO2-RGO film were systematically characterized. The results showed that the obtained TiO2-RGO nanocomposite exhibited reduced oxygen-containing group content and enhanced electro-conductivity as compared with those of GO. Moreover, the NCC flm flled with TiO2-RGO nanocomposite displayed an electro-conductivity of up to 9.3 S/m and improved mechanical properties compared with that of the control. This work could provide a route for producing electro-conductive NCC flms, which may hold signifcant potential as transparent ?exible substrates for future electronic device applications.展开更多
The feasibility of biomass-based activated carbon has received tremendous attention owing to its excellent properties,such as insensitivity,good adsorption performance,and potential to reduce the strong dependence on ...The feasibility of biomass-based activated carbon has received tremendous attention owing to its excellent properties,such as insensitivity,good adsorption performance,and potential to reduce the strong dependence on non-reproducible precursors.In this study,bamboo-based activated carbon(BAC)was used as the raw material for methylene blue(MB)removal.Cetyltrimethylammonium bromide(CTAB),sodium dodecyl sulfate(SDS),and sodium dodecylbenzene sulfonate(SDBS)were used as BAC surface modifiers.The morphologies and structures of the samples were characterized.In addition,the effects of the surfactant type and concentration on the adsorption-based removal of MB from aqueous solutions by the modified BAC were systematically investigated.For the 0.2 g/L MB solution,the MB removal rate reached 99.7%when the concentration of CTAB was 0.25 g/L.Moreover,the kinetic model curve of 0.25 g/L CTAB-modified BAC(CAC)was consistent with the Freundlich isotherm model.This research work enriches the technical pathway of modification and application of activated carbon,which is not only beneficial for realizing the high-value utilization of biomass bamboo resources but also can play an active role in guiding the treatment of MB-containing wastewater.展开更多
Cellulose is the most abundant renewable polymer in the nature,and cellulosic paper is widely used in our daily life.Conferring electroconductivity to cellulosic paper would allow this conventional material to hold gr...Cellulose is the most abundant renewable polymer in the nature,and cellulosic paper is widely used in our daily life.Conferring electroconductivity to cellulosic paper would allow this conventional material to hold great promise for a wide range of energy-related applications.In the present work,multi-walled carbon nanotube(MWCNT)/polyaniline(PANI)nanocomposites were synthesized via in situ oxidation polymerization process and characterized by FT-IR and TEM.Subsequently,the application of the synthesized MWCNT/PANI nanocomposites as a wet-end filler for the production of electro-conductive paper was demonstrated/developed.Results showed that the cellulosic paper was imparted with an electro-conductivity of up to 0.14 S·m^(-1) while exhibiting a pronounced improvement in mechanical properties as a function of the added MWCNT/PANI nanocomposites.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(grant no.22078306)Key Research and Development Program of Zhejiang Province(grant no.2020C02021)+1 种基金521 Talent Cultivation Program of Zhejiang Sci-Tech University(grant no.11110132521310)Qujiang Science and Technology Project(grant no.QJ2020023).
文摘Nanocellulose has served as an eye-catching nanomaterial for constructing advanced functional devices with renewability,light weight,flexibility,and environmental friendliness.In this study,Co_(3)O_(4)/graphene/cellulose nanofiber(CNF)flexible composite films,in which the CNF acted as a spacer for the graphene,were prepared via a facile and scalable vacuum filtration method.The effects of the CNF on the microstructure,hydrophilicity,thermal stability,tensile strength,surface resistance,and electrochemical performance of the Co_(3)O_(4)/graphene/CNF composite films were systematically investigated.The results showed that the synergistic interaction of the CNF and graphene substantially improved the overall properties of the Co_(3)O_(4)/graphene/CNF composite films,particularly their hydrophilicity and tensile strength.Meanwhile,Co_(3)O_(4)/graphene/CNF composite films with a CNF content of 4%appeared to have the optimal electrochemical performance,with an area specific capacitance of 56 mF/cm^(2) and prominent capacitance retention of 95.6%at a current density of 1 A/g after 1000 cycles.This work demonstrated that the prepared Co_(3)O_(4)/graphene/CNF flexible composite films have great application potential in the field of flexible energy storage devices.
基金financially supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY14C160003, LQ16C160002)the National Natural Science Foundation of China (Grant No.31100442)+2 种基金the Public Projects of Zhejiang Province (Grant No. 2017C31059)Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology, Zhejiang Open Foundation of the Most Important Subjects (Grant No. 2016KF01)521 Talent Cultivation Program of Zhejiang Sci-Tech University (Grant No. 11110132521310)
文摘Imparting electro-conductive properties to nanocellulose-based products may render them suitable for applications in electronics, optoelectronics, and energy storage devices. In the present work, an electro-conductive nanocrystalline cellulose (NCC) film filled with TiO2-reduced-graphene oxide (TiO2-RGO) was developed. Initially, graphene oxide (GO) was prepared using the modified Hummers method and thereafter photocatalytically reduced using TiO2 as a catalyst. Subsequently, an electro-conductive NCC film was prepared via vacuum filtration with the as-prepared TiO2-RGO nanocomposite as a functional filler. The TiO2-RGO nanocomposite and the NCC/TiO2-RGO film were systematically characterized. The results showed that the obtained TiO2-RGO nanocomposite exhibited reduced oxygen-containing group content and enhanced electro-conductivity as compared with those of GO. Moreover, the NCC flm flled with TiO2-RGO nanocomposite displayed an electro-conductivity of up to 9.3 S/m and improved mechanical properties compared with that of the control. This work could provide a route for producing electro-conductive NCC flms, which may hold signifcant potential as transparent ?exible substrates for future electronic device applications.
基金support from the Quzhou Science and Technology Plan Project(No.2022Z07).
文摘The feasibility of biomass-based activated carbon has received tremendous attention owing to its excellent properties,such as insensitivity,good adsorption performance,and potential to reduce the strong dependence on non-reproducible precursors.In this study,bamboo-based activated carbon(BAC)was used as the raw material for methylene blue(MB)removal.Cetyltrimethylammonium bromide(CTAB),sodium dodecyl sulfate(SDS),and sodium dodecylbenzene sulfonate(SDBS)were used as BAC surface modifiers.The morphologies and structures of the samples were characterized.In addition,the effects of the surfactant type and concentration on the adsorption-based removal of MB from aqueous solutions by the modified BAC were systematically investigated.For the 0.2 g/L MB solution,the MB removal rate reached 99.7%when the concentration of CTAB was 0.25 g/L.Moreover,the kinetic model curve of 0.25 g/L CTAB-modified BAC(CAC)was consistent with the Freundlich isotherm model.This research work enriches the technical pathway of modification and application of activated carbon,which is not only beneficial for realizing the high-value utilization of biomass bamboo resources but also can play an active role in guiding the treatment of MB-containing wastewater.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.31100442)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY14C160003)+1 种基金Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology and 521 Talent Cultivation Program of Zhejiang Sci-Tech University(Grant No.11110132521310)Open Foundation of the Key Lab of Pulp and Paper Science&Technology of Ministry of Education,Qilu University of Technology(Grant No.KF201403).
文摘Cellulose is the most abundant renewable polymer in the nature,and cellulosic paper is widely used in our daily life.Conferring electroconductivity to cellulosic paper would allow this conventional material to hold great promise for a wide range of energy-related applications.In the present work,multi-walled carbon nanotube(MWCNT)/polyaniline(PANI)nanocomposites were synthesized via in situ oxidation polymerization process and characterized by FT-IR and TEM.Subsequently,the application of the synthesized MWCNT/PANI nanocomposites as a wet-end filler for the production of electro-conductive paper was demonstrated/developed.Results showed that the cellulosic paper was imparted with an electro-conductivity of up to 0.14 S·m^(-1) while exhibiting a pronounced improvement in mechanical properties as a function of the added MWCNT/PANI nanocomposites.