期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
DCAU-Net:dense convolutional attention U-Net for segmentation of intracranial aneurysm images 被引量:2
1
作者 Wenwen Yuan yanjun peng +2 位作者 Yanfei Guo Yande Ren Qianwen Xue 《Visual Computing for Industry,Biomedicine,and Art》 EI 2022年第1期99-114,共16页
Segmentation of intracranial aneurysm images acquired using magnetic resonance angiography(MRA)is essential for medical auxiliary treatments,which can effectively prevent subarachnoid hemorrhages.This paper proposes a... Segmentation of intracranial aneurysm images acquired using magnetic resonance angiography(MRA)is essential for medical auxiliary treatments,which can effectively prevent subarachnoid hemorrhages.This paper proposes an image segmentation model based on a dense convolutional attention U-Net,which fuses deep and rich semantic information with shallow-detail information for adaptive and accurate segmentation of MRA-acquired aneurysm images with large size differences.The U-Net model serves as a backbone,combining dense block and convolution block attention module(CBAM).The dense block is composed of a batch normalization layer,an randomly rectified linear unit activation function,and a convolutional layer,for mitigation of vanishing gradients,for multiplexing of aneurysm features,and for improving the network training efficiency.The CBAM is composed of a channel attention module and a spatial attention module,improving the segmentation performance of feature discrimination and enhancing the acquisition of key feature information.Owing to the large variation of aneurysm sizes,multi-scale fusion is performed during up-sampling,for adaptive segmentation of MRA-acquired aneurysm images.The model was tested on the MICCAI 2020 ADAM dataset,and its generalizability was validated on the clinical aneurysm dataset(aneurysm sizes:<3 mm,3–7 mm,and>7 mm)supplied by the Affiliated Hospital of Qingdao University.A good clinical application segmentation performance was demonstrated. 展开更多
关键词 Deep learning Intracranial aneurysm segmentation Magnetic resonance angiography Multi-scale fusion
在线阅读 下载PDF
血脂亚组与冠状动脉粥样硬化性心脏病患者冠状动脉狭窄程度相关性的研究 被引量:15
2
作者 王欣怡 彭琰君 +1 位作者 韩雪晶 贾克刚 《中华预防医学杂志》 CAS CSCD 北大核心 2021年第12期1435-1441,共7页
目的探讨低密度脂蛋白颗粒(low-density lipoprotein particles,LDL-P)与其他脂蛋白指标相关性,结合冠状动脉造影结果分析LDL-P及其亚组颗粒(LDL1-P~LDL6-P)浓度与冠状动脉粥样硬化性心脏病(coronary atherosclerotic heart disease,CHD... 目的探讨低密度脂蛋白颗粒(low-density lipoprotein particles,LDL-P)与其他脂蛋白指标相关性,结合冠状动脉造影结果分析LDL-P及其亚组颗粒(LDL1-P~LDL6-P)浓度与冠状动脉粥样硬化性心脏病(coronary atherosclerotic heart disease,CHD)患者冠状动脉狭窄程度的相关性,探索脂蛋白亚组颗粒预防CHD患者冠状动脉狭窄严重程度的价值。方法横断面研究,连续选取2019年8至12月泰达国际心血管病医院心内科3个月内未服用降脂药行冠状动脉造影检查的259例患者,同期选取健康体检者52名。采用全自动生化分析仪检测血清超敏C反应蛋白(high sensitivity C-reactive protein,hs-CRP)水平及其他生化指标,核磁共振波谱法(nuclear magnetic resonance spectroscopy,NMRS)检测血浆LDL-P、LDL1-P~LDL6-P及其他生化指标,分析各生化指标与冠状动脉狭窄程度的相关性。采用方差分析及非参数检验比较各组间指标差异,Pearson相关判断所测指标之间的相关性,Logistic回归进行多因素分析,ROC曲线评估相关指标的辅助诊断价值。结果低密度脂蛋白颗粒(low-density lipoprotein particles,LDL-P)与低密度脂蛋白胆固醇(low-density lipoprotein cholesterol,LDL-C)、载脂蛋白B(apolipoprotein B,ApoB)、总胆固醇(total cholesterol,TC)具有高度相关性(r=0.927,P<0.001;r=0.921,P<0.001;r=0.844,P<0.001)。冠状动脉重度狭窄患者LDL-P、LDL4-P、LDL5-P和LDL6-P水平较冠状动脉轻度狭窄患者水平高(U=4172.000,Z=4.256,P<0.001;t=2.573,P=0.011;U=3995.000,Z=4.621,P<0.001;t=5.223,P<0.001),LDL-P和LDL6-P水平较冠状动脉中度狭窄患者水平高(U=1159.000,Z=2.294,P=0.022;t=2.075,P=0.041)。高水平hs-CRP、LDL5-P、LDL6-P是冠状动脉狭窄程度的危险因子(OR=1.095,P=0.036;OR=1.015,P=0.046;OR=1.012,P=0.039)。ROC分析LDL-P、LDL5-P、LDL6-P对冠状动脉狭窄程度的鉴定价值,AUC分别为0.67、0.68、0.69,hs-CRP联合LDL5-P与LDL6-P对冠状动脉狭窄程度的辅助诊断价值最大(AUC=0.70)。结论LDL-P与LDL-C、ApoB、TC高度相关,冠状动脉重度狭窄患者LDL-P和LDL6-P水平较轻、中度狭窄患者明显升高,hs-CRP与LDL5-P、LDL6-P为冠状动脉狭窄程度的危险因子,三者联合检测有助于辅助诊断冠状动脉狭窄严重程度,有可能进一步成为风险预测指标。 展开更多
关键词 低密度脂蛋白 冠状动脉粥样硬化性心脏病 核磁共振波谱法 冠状动脉狭窄程度 低密度脂蛋白亚组颗粒
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部