Ethanol conversion to high-value-added products has attracted considerable attention in both academic research and industrial fields.In this study,we synthesized a series of tunable acid–base bifunctional Zn-Zr-Al me...Ethanol conversion to high-value-added products has attracted considerable attention in both academic research and industrial fields.In this study,we synthesized a series of tunable acid–base bifunctional Zn-Zr-Al metal oxides(represented as Zn2ZrxAl-MMO)in light of the structural topotactic transformation of Zn2ZrxAl-hydrotalcite precursors(Zn2ZrxAl-LDH).The resulting Zn2ZrxAl-MMO catalysts were employed in the conversion of ethanol to diethyl carbonate.The Zr^4+ ion content of the LDH precursor plays a key role in modulating the acid-base properties and determining catalytic performance:the Zn2Zr0.1Al-MMO sample exhibits the optimal catalytic behavior with a diethyl carbonate(DEC)yield of 42.1%,which is the highest reported for metal oxide catalysts.Structure-property correlation investigations revealed that the synergic catalysis between medium-strong basic sites and weak acid sites plays a predominant role in the catalytic behavior.Furthermore,in situ Fourier transform infrared measurements showed that the weak acidic site promotes activation adsorption of the reactant(urea)and the intermediate product(ethyl carbamate),while the medium-strong basic site accelerates ethanol activation.Moreover,the Zn2Zr0.1Al-MMO catalyst has the advantages of cost effectiveness,good stability,and reusability.Therefore,the acid-base bifunctional catalysts developed in this work can be employed as promising candidates in acid-base catalytic reactions such as ethanol conversion.展开更多
The development of asphalt-based UV blocking materials is important to extend the alphalt lifespan in road construction. In this work, we put forward that the fabrication of host-vip system can be an effective way t...The development of asphalt-based UV blocking materials is important to extend the alphalt lifespan in road construction. In this work, we put forward that the fabrication of host-vip system can be an effective way to obtain UV blocking materials. Firstly, a new anionic Schiff base, N,N'bis(salicylidine)-4,4'-diaminostilbene-2,2'-disulfonic acid (SDSD), has been synthesized, which was intercalated into Zn-Al-LDH by anion-exchange method. FT-IR and XRD illustrate the layered organic-inorganic composite, Zn-Al-SDSD-LDH, has been successfully synthesized with high crystallinity. Laser particle size analyzer, SEM and TEM show that particle size distributions of Zn-Al-SDSD-LDH is in the range 100--500 nm. UV-vis absorption spectra show that Zn-Al-SDSD-LDH has better UV absorption than the pristine Zn-Al-LDH and SDSD. Furthermore, the mixture of asphalt and 3 wt% Zn-Al-SDSD-LDH presents enhanced UV blocking property relative to the pristine asphalt after irradiating by UV spray accelerated weathering test. Therefore, this work not only develops a new type of host-vip Zn-Al-SDSD- LDH, but also confirms it can be an effective asphalt UV blocking material for practical application.展开更多
Considerable smoke and toxic volatiles generation has compromised the application of thermoplastic polyurethane (TPU) and caused a great threat to human life. Here, nano-MgFe layered double hydroxide (MgFe-LDH) with u...Considerable smoke and toxic volatiles generation has compromised the application of thermoplastic polyurethane (TPU) and caused a great threat to human life. Here, nano-MgFe layered double hydroxide (MgFe-LDH) with uniform particle size was synthesized to reduce smoke density and toxic gases of TPU composites using ammonium polyphosphate (APP) as a flame retardant agent. The results show that the combination of 16 wt.% APP and 4 wt.% MgFe-LDH greatly decreased the smoke density (D20min and Ds, max), smoke production rate (SPR) and heat release rate (HRR) of TPU composites. Furthermore, the MgFe-LDH synergist demonstrated high efficiency in decreasing total volatiled products and toxic volatiles evolved, such as the CO, HCN and isocyanates. The reason was mainly attributed to the chemical reaction between MgFe-LDH and APP, which can promote the compactness of char layers with fine microstructure formed in the decomposition process of MgFe-LDH/APP/TPU composites. The protective char layers could act as barriers between combustion zone and matrix to protect the unburned substrate and promote smoke suppression effect.展开更多
Highly dispersed negative carboxyl groups can be formed on carbon black (CB) surface modified with strong nitric acid. Therefore positive cations can be uniformly absorbed by carboxyl groups and precipitated within ...Highly dispersed negative carboxyl groups can be formed on carbon black (CB) surface modified with strong nitric acid. Therefore positive cations can be uniformly absorbed by carboxyl groups and precipitated within a confinement space on modified CB surface to prepare highly dispersed nanomaterials. In this paper, the formation and dispersion status of surface negative carboxyl groups, adsorption status of Ce^3+, surface confinement nucleation, crystallization and calcination process were studied by EDS, SEM, and laser particle size analysis. The results show that the carboxyl groups formed on modified CB surface are highly dispersed, and Ce^3+ cations can be uniformly anchored by carboxyl groups. Therefore, highly dispersed Ce^3+ can react with OH^- within a confinement surface region to form positive nano-Ce(OH)4 nuclei which also can be adsorbed by electrostatic attraction. After independent growth of Ce(OH)4 without agglomeration, highly dispersed CeO2 nanoparticles without agglomeration can be prepared together with the help of effectively isolates by CO2 released in the combustion of CB.展开更多
Appropriate surface modification or functionalization is prerequisite for the application of inorganic nanoparticles.And surface control between organic and inorganic interface plays an important role in constructing ...Appropriate surface modification or functionalization is prerequisite for the application of inorganic nanoparticles.And surface control between organic and inorganic interface plays an important role in constructing organic-inorganic composites.In-situ polymerization has been extensively studied to improve the compatibility and dispersibility of inorganic nanoparticles,but the polymerized nanoparticles tend to concatenate and form large composites,restricting further applications.Herein,uniform and dense polyacrylic acid(PAA)membranes have been grafted on layered double hydroxide(LDH)nanosheets via an in-situ initiating and terminating radical graft polymerization method.With initiating and terminating on the same particle,the size,morphology and density of grafted PAA onto the surface of LDHs can be controlled by adjusting the ratio of initiated sites to terminated sites,the amount of redox initiator or monomer.As a result,with only 17.33%organic grafting ratio,PAA@LDHs with largely improved compatibility can be monodispersed in polyethylene(PE)and polyvinyl chloride(PVC)matrices,which is determined by a fluorescence microscope technique.展开更多
基金supported by the National Key R&D Program(2017YFA0206804)the National Natural Science Foundation of China(21871021,21521005)the Fundamental Research Funds for the Central Universities(buctylkxj01,XK1802-6)~~
文摘Ethanol conversion to high-value-added products has attracted considerable attention in both academic research and industrial fields.In this study,we synthesized a series of tunable acid–base bifunctional Zn-Zr-Al metal oxides(represented as Zn2ZrxAl-MMO)in light of the structural topotactic transformation of Zn2ZrxAl-hydrotalcite precursors(Zn2ZrxAl-LDH).The resulting Zn2ZrxAl-MMO catalysts were employed in the conversion of ethanol to diethyl carbonate.The Zr^4+ ion content of the LDH precursor plays a key role in modulating the acid-base properties and determining catalytic performance:the Zn2Zr0.1Al-MMO sample exhibits the optimal catalytic behavior with a diethyl carbonate(DEC)yield of 42.1%,which is the highest reported for metal oxide catalysts.Structure-property correlation investigations revealed that the synergic catalysis between medium-strong basic sites and weak acid sites plays a predominant role in the catalytic behavior.Furthermore,in situ Fourier transform infrared measurements showed that the weak acidic site promotes activation adsorption of the reactant(urea)and the intermediate product(ethyl carbamate),while the medium-strong basic site accelerates ethanol activation.Moreover,the Zn2Zr0.1Al-MMO catalyst has the advantages of cost effectiveness,good stability,and reusability.Therefore,the acid-base bifunctional catalysts developed in this work can be employed as promising candidates in acid-base catalytic reactions such as ethanol conversion.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 21301016 and 21473013), the 973 Program (Grant No. 2014CB- 932103), and the Beijing Municipal Natural Science Foundation (Grant No. 2152016).
文摘The development of asphalt-based UV blocking materials is important to extend the alphalt lifespan in road construction. In this work, we put forward that the fabrication of host-vip system can be an effective way to obtain UV blocking materials. Firstly, a new anionic Schiff base, N,N'bis(salicylidine)-4,4'-diaminostilbene-2,2'-disulfonic acid (SDSD), has been synthesized, which was intercalated into Zn-Al-LDH by anion-exchange method. FT-IR and XRD illustrate the layered organic-inorganic composite, Zn-Al-SDSD-LDH, has been successfully synthesized with high crystallinity. Laser particle size analyzer, SEM and TEM show that particle size distributions of Zn-Al-SDSD-LDH is in the range 100--500 nm. UV-vis absorption spectra show that Zn-Al-SDSD-LDH has better UV absorption than the pristine Zn-Al-LDH and SDSD. Furthermore, the mixture of asphalt and 3 wt% Zn-Al-SDSD-LDH presents enhanced UV blocking property relative to the pristine asphalt after irradiating by UV spray accelerated weathering test. Therefore, this work not only develops a new type of host-vip Zn-Al-SDSD- LDH, but also confirms it can be an effective asphalt UV blocking material for practical application.
基金This work was supported by the Qinghai Provincial Major Science and Technology Special Project(2020-GX-A1)the National Natural Science Foundation of China(NSFC)(Nos.21776018,21521005,U170760003,and 21905014)the Fundamental Research Funds for the Central Universities(No.XK1803-5).
文摘Considerable smoke and toxic volatiles generation has compromised the application of thermoplastic polyurethane (TPU) and caused a great threat to human life. Here, nano-MgFe layered double hydroxide (MgFe-LDH) with uniform particle size was synthesized to reduce smoke density and toxic gases of TPU composites using ammonium polyphosphate (APP) as a flame retardant agent. The results show that the combination of 16 wt.% APP and 4 wt.% MgFe-LDH greatly decreased the smoke density (D20min and Ds, max), smoke production rate (SPR) and heat release rate (HRR) of TPU composites. Furthermore, the MgFe-LDH synergist demonstrated high efficiency in decreasing total volatiled products and toxic volatiles evolved, such as the CO, HCN and isocyanates. The reason was mainly attributed to the chemical reaction between MgFe-LDH and APP, which can promote the compactness of char layers with fine microstructure formed in the decomposition process of MgFe-LDH/APP/TPU composites. The protective char layers could act as barriers between combustion zone and matrix to protect the unburned substrate and promote smoke suppression effect.
基金This work was supported by the National Key R&D Program of China (2016YFB0301602) and the National Natural Science Foundation of China (Grant Nos. 21776018 and 21627813).
文摘Highly dispersed negative carboxyl groups can be formed on carbon black (CB) surface modified with strong nitric acid. Therefore positive cations can be uniformly absorbed by carboxyl groups and precipitated within a confinement space on modified CB surface to prepare highly dispersed nanomaterials. In this paper, the formation and dispersion status of surface negative carboxyl groups, adsorption status of Ce^3+, surface confinement nucleation, crystallization and calcination process were studied by EDS, SEM, and laser particle size analysis. The results show that the carboxyl groups formed on modified CB surface are highly dispersed, and Ce^3+ cations can be uniformly anchored by carboxyl groups. Therefore, highly dispersed Ce^3+ can react with OH^- within a confinement surface region to form positive nano-Ce(OH)4 nuclei which also can be adsorbed by electrostatic attraction. After independent growth of Ce(OH)4 without agglomeration, highly dispersed CeO2 nanoparticles without agglomeration can be prepared together with the help of effectively isolates by CO2 released in the combustion of CB.
基金supported by the National Natural Science Foundation of China(Nos.21776018,21627813,U170760003,21521005,and 21905014)the Qinghai Provincial Major Science and Technology Special Project(No.2020-GX-A1)the Key R&D Program of Gansu Province(No.19YF3GA003).
文摘Appropriate surface modification or functionalization is prerequisite for the application of inorganic nanoparticles.And surface control between organic and inorganic interface plays an important role in constructing organic-inorganic composites.In-situ polymerization has been extensively studied to improve the compatibility and dispersibility of inorganic nanoparticles,but the polymerized nanoparticles tend to concatenate and form large composites,restricting further applications.Herein,uniform and dense polyacrylic acid(PAA)membranes have been grafted on layered double hydroxide(LDH)nanosheets via an in-situ initiating and terminating radical graft polymerization method.With initiating and terminating on the same particle,the size,morphology and density of grafted PAA onto the surface of LDHs can be controlled by adjusting the ratio of initiated sites to terminated sites,the amount of redox initiator or monomer.As a result,with only 17.33%organic grafting ratio,PAA@LDHs with largely improved compatibility can be monodispersed in polyethylene(PE)and polyvinyl chloride(PVC)matrices,which is determined by a fluorescence microscope technique.