期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Enhancing d-p orbital hybridization through oxygen vacancies boosting capacity and kinetics of layered double hydroxides for durable aqueous magnesium-ion batteries
1
作者 Weizhi Kou Zhitang Fang +9 位作者 yangyang sui Yubo Yang Cong Liu Chenyu Yang Congyan Jiang Gang Yang Luming Peng Xuefeng Guo Weiping Ding Wenhua Hou 《Journal of Energy Chemistry》 2025年第8期558-569,共12页
Layered double hydroxides(LDHs)are potential cathode materials for aqueous magnesium-ion batteries(AMIBs).However,the low capacity and sluggish kinetics significantly limit their electrochemical performance in AMIBs.H... Layered double hydroxides(LDHs)are potential cathode materials for aqueous magnesium-ion batteries(AMIBs).However,the low capacity and sluggish kinetics significantly limit their electrochemical performance in AMIBs.Herein,we find that oxygen vacancies can significantly boost the capacity,electrochemical kinetics,and structure stability of LDHs.The corresponding structure-performance relationship and energy storage mechanism are elaborated through exhaustive in/ex-situ experimental characterizations and density functional theory(DFT)calculations.Specially,in-situ Raman and DFT calculations reveal that oxygen vacancies elevate orbital energy of O 2p and electron density of O atoms,thereby enhancing the orbital hybridization of O 2p with Ni/Co 3d.This facilitates electron transfer between O and adjacent Ni/Co atoms and improves the covalency of Ni–O and Co–O bonds,which activates Ni/Co atoms to release more capacity and stabilizes the Ov-NiCo-LDH structure.Moreover,the distribution of relaxation times(DRT)and molecular dynamics(MD)simulations disclose that the enhanced d-p orbital hybridization optimizes the electronic structure of Ov-NiCo-LDH,which distinctly reduces the diffusion energy barriers of Mg^(2+)and improves the charge transfer kinetics of Ov-NiCo-LDH.Consequently,the assembled Ov-NiCo-LDH//active carbon(AC)and Ov-NiCo-LDH//perylenediimide(PTCDI)AMIBs can both deliver high specific discharge capacity(182.7 and 59.4 mAh g^(−1)at 0.5 A g^(−1),respectively)and long-term cycling stability(85.4%and 89.0%of capacity retentions after 2500 and 2400 cycles at 1.0 A g^(−1),respectively).In addition,the practical prospects for Ov-NiCo-LDH-based AMIBs have been demonstrated in different application scenarios.This work not only provides an effective strategy for obtaining high-performance cathodes of AMIBs,but also fundamentally elucidates the inherent mechanisms. 展开更多
关键词 Layered double hydroxide Aqueous magnesium-ion battery Oxygen vacancy d-p orbital hybridization Electrochemical kinetics
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部