Hot flow anomalies(HFAs)are not only a terrestrial phenomenon,but also a solar-system-wide phenomenon,one that can cause significant perturbations in planetary magnetospheres and ionospheres.In this study,based on the...Hot flow anomalies(HFAs)are not only a terrestrial phenomenon,but also a solar-system-wide phenomenon,one that can cause significant perturbations in planetary magnetospheres and ionospheres.In this study,based on the observations of Mars Atmosphere and Volatile EvolutioN(MAVEN)mission in the region upstream of the Martian bow shock from the year 2014 to 2020,we have investigated the statistical properties of HFAs around Mars.Our results show that HFAs can be found in a wide region of Mars,from the dayside to the terminator region.On average,these HFAs last 63 seconds,with a thickness of 28 local proton gyroradii.They are more prevalent when the ambient solar wind is denser and faster,and usually occur when the interplanetary magnetic field magnitude is between 1-4 nT.Martian HFAs can also lead to solar wind dynamics multiplying in pressure by factors of ten within only tens of seconds,which could significantly influence the heights of the Martian ionopause and induced magnetosphere boundary.By comparing HFAs around Earth,we suggest that these phenomena are primarily governed by solar wind dynamics rather than local planetary conditions.展开更多
In this study,the nitrogen and oxygen isotope compositions of nitrite in the upper 150 m water column of the Amundsen Sea in the summer of 2019 and 2020 were measured to reveal the distribution and transformation of n...In this study,the nitrogen and oxygen isotope compositions of nitrite in the upper 150 m water column of the Amundsen Sea in the summer of 2019 and 2020 were measured to reveal the distribution and transformation of nitrite in the euphotic zone of the Southern Ocean.We found that primary nitrite maxima(PNMs)are widely present in the Amundsen Sea,where the depth of occurrence deepens from east to west and nitrite concentrations increases.Evidence from dual isotopes suggests that the formation of PNMs in all regions of the Amundsen Sea is dominated by ammonia oxidation.More importantly,the nitrogen and oxygen isotope compositions of nitrite in the Amundsen Sea mixed layer are abnormal,and their depth profiles are mirror symmetrical.Isotopic anomalies exhibit spatial variations,with central surface water having the lowest nitrogen isotope composition(−89.9‰±0.2‰)and western surface water having the highest oxygen isotope composition(63.3‰±0.3‰).Isotopic exchange reaction between nitrate and nitrite is responsible for these isotope anomalies,as both nitrogen and oxygen isotopes have large isotopic fractionation and opposite enrichment effects.This proves that isotopic exchange reaction operates extensively in different regions of the Amundsen Sea.Our study highlights the unique role of dual isotopes of nitrite in deepening the understanding of nitrogen cycle.Further studies on ammonia oxidation and isotopic exchange between nitrate and nitrite are warranted in the future to understand their roles in the nitrogen cycle in the Southern Ocean.展开更多
Geomagnetic storms can result in large magnetic field disturbances and intense currents in the magnetosphere and even on the ground.As an important medium of momentum and energy transport among the solar wind,magnetos...Geomagnetic storms can result in large magnetic field disturbances and intense currents in the magnetosphere and even on the ground.As an important medium of momentum and energy transport among the solar wind,magnetosphere,and ionosphere,field-aligned currents(FACs)can also be strengthened in storm times.This study shows the responses of FACs in the plasma sheet boundary layer(PSBL)observed by the Magnetospheric Multiscale(MMS)spacecraft in different phases of a large storm that lasted from May 27,2017,to May 29,2017.Most of the FACs were carried by electrons,and several FACs in the storm time also contained sufficient ion FACs.The FAC magnitudes were larger in the storm than in the quiet period,and those in the main phase were the strongest.In this case,the direction of the FACs in the main phase showed no preference for tailward or earthward,whereas the direction of the FACs in the recovery phase was mostly tailward.The results suggest that the FACs in the PSBL are closely related to the storm and could be driven by activities in the tail region,where the energy transported from the solar wind to the magnetosphere is stored and released as the storm is evolving.Thus,the FACs are an important medium of energy transport between the tail and the ionosphere,and the PSBL is a significant magnetosphere–ionosphere coupling region in the nightside.展开更多
Raptors can change the shape and area of their wings to an exceptional degree in a fast and efficient manner,surpassing other birds,insects,or bats.Some researchers have focused on the functional properties of muscle ...Raptors can change the shape and area of their wings to an exceptional degree in a fast and efficient manner,surpassing other birds,insects,or bats.Some researchers have focused on the functional properties of muscle skeletons,mechanics,and flapping robot design.However,the wing motion of the birds of prey has not been measured quantitatively,and synthetic bionic wings with morphing abilities similar to raptors are far from reality.Therefore,in the current study,a 3D suspension system for holding bird carcasses was designed and fabricated to fasten the wings of Falco Peregrinus with a series of morphing postures.Subsequently,the wing skeleton of the falcon was scanned during extending motions using the computed tomography(CT)approach to obtain three consecutive poses.Subsequently,the skeleton was reconstructed to identify the contribution of the forelimb bones to the extending/folding motions.Inspired by these findings,we propose a simple mechanical model with four bones to form a wing-morphing mechanism using the proposed pose optimisation method.Finally,a bionic wing mechanism was implemented to imitate the motion of the falcon wing—divided into inner and outer wings with folding and twisting motions.The results show that the proposed four-bar mechanism can track bone motion paths with high fidelity.展开更多
Partial liver resection is an established treatment for hepatic disorders.However,surgical bleeding,intra-abdominal adhesion and rapid liver regeneration are still major challenges after partial liver resection,associ...Partial liver resection is an established treatment for hepatic disorders.However,surgical bleeding,intra-abdominal adhesion and rapid liver regeneration are still major challenges after partial liver resection,associated with morbidity and mortality.Herein,a biomimetic hybrid hydrogel,composed of oxidized hyaluronic acid,glycol chitosan and MenSCs-derived conditioned medium(CM),is presented to address these issues.The hybrid hydrogel is formed through reversible Schiff base,and possesses injectability and self-healing capability.Moreover,hybrid hydrogel exhibits the capabilities of hemostasis,anti-infection,tissue adhesion and controllable release of cargoes.Based on in vivo studies of the multifunctional hybrid hydrogel,it is demonstrated that acute bleeding in partial liver resection can be ceased immediately by virtue of the hemostasis features of hybrid hydrogel.Also,a significant reduction of intra-abdominal adhesion is confirmed in hybrid hydrogel-treated resection surface.Furthermore,upon the treatment of hybrid hydrogel,hepatic cell proliferation and tissue regeneration can be significantly improved due to the controllably released cytokines from MenSCs-derived CM,exerting the effects of mitogenesis and anti-inflammation in vivo.Thus,the biomimetic hybrid hydrogel can be a promising candidate with great potential for application in partial liver resection.展开更多
基金supported by NSFC grants 42274219,42330207,42374213 and 42130204Shenzhen Key Laboratory Launching Project(No.ZDSYS20210702140800001)+1 种基金supported by Frontier Science Center of matter behave in space environmentthe support of the National Key Research and Development Program of China(No.2022YFA1604600).
文摘Hot flow anomalies(HFAs)are not only a terrestrial phenomenon,but also a solar-system-wide phenomenon,one that can cause significant perturbations in planetary magnetospheres and ionospheres.In this study,based on the observations of Mars Atmosphere and Volatile EvolutioN(MAVEN)mission in the region upstream of the Martian bow shock from the year 2014 to 2020,we have investigated the statistical properties of HFAs around Mars.Our results show that HFAs can be found in a wide region of Mars,from the dayside to the terminator region.On average,these HFAs last 63 seconds,with a thickness of 28 local proton gyroradii.They are more prevalent when the ambient solar wind is denser and faster,and usually occur when the interplanetary magnetic field magnitude is between 1-4 nT.Martian HFAs can also lead to solar wind dynamics multiplying in pressure by factors of ten within only tens of seconds,which could significantly influence the heights of the Martian ionopause and induced magnetosphere boundary.By comparing HFAs around Earth,we suggest that these phenomena are primarily governed by solar wind dynamics rather than local planetary conditions.
基金The Impact and Response of Antarctic Seas to Climate Change under contract Nos IRASCC 02-01-01 and IRASCC 01-01-02Cthe National Natural Science Foundation of China under contract No.41721005.
文摘In this study,the nitrogen and oxygen isotope compositions of nitrite in the upper 150 m water column of the Amundsen Sea in the summer of 2019 and 2020 were measured to reveal the distribution and transformation of nitrite in the euphotic zone of the Southern Ocean.We found that primary nitrite maxima(PNMs)are widely present in the Amundsen Sea,where the depth of occurrence deepens from east to west and nitrite concentrations increases.Evidence from dual isotopes suggests that the formation of PNMs in all regions of the Amundsen Sea is dominated by ammonia oxidation.More importantly,the nitrogen and oxygen isotope compositions of nitrite in the Amundsen Sea mixed layer are abnormal,and their depth profiles are mirror symmetrical.Isotopic anomalies exhibit spatial variations,with central surface water having the lowest nitrogen isotope composition(−89.9‰±0.2‰)and western surface water having the highest oxygen isotope composition(63.3‰±0.3‰).Isotopic exchange reaction between nitrate and nitrite is responsible for these isotope anomalies,as both nitrogen and oxygen isotopes have large isotopic fractionation and opposite enrichment effects.This proves that isotopic exchange reaction operates extensively in different regions of the Amundsen Sea.Our study highlights the unique role of dual isotopes of nitrite in deepening the understanding of nitrogen cycle.Further studies on ammonia oxidation and isotopic exchange between nitrate and nitrite are warranted in the future to understand their roles in the nitrogen cycle in the Southern Ocean.
基金funded by the National Natural Science Foundation of China(NSFCGrant Nos.42204177,42274219,41974205,42130204,42241155,and 42241133)+5 种基金the Guangdong Basic and Applied Basic Research Foundation-Natural Science Foundation of Guangdong(Grant Nos.2022A1515010257,2022A1515011698,and 2023A1515030132)the Shenzhen Science and Technology Research Program(Grant Nos.JCYJ20210324121403009 and JCYJ20210324121412034)the Macao foundation,the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2022041)the Shenzhen Key Laboratory Launching Project(Grant No.ZDSYS20210702140800001)the pre-research project on Civil Aerospace Technologies(Grant No.D020103)funded by the China National Space Administration.YuanQiang Chen was also funded by China Postdoctoral Science Foundation(Grant No.2022M720944)supported by the Chinese Academy of Sciences Center for Excellence in Comparative Planetology.
文摘Geomagnetic storms can result in large magnetic field disturbances and intense currents in the magnetosphere and even on the ground.As an important medium of momentum and energy transport among the solar wind,magnetosphere,and ionosphere,field-aligned currents(FACs)can also be strengthened in storm times.This study shows the responses of FACs in the plasma sheet boundary layer(PSBL)observed by the Magnetospheric Multiscale(MMS)spacecraft in different phases of a large storm that lasted from May 27,2017,to May 29,2017.Most of the FACs were carried by electrons,and several FACs in the storm time also contained sufficient ion FACs.The FAC magnitudes were larger in the storm than in the quiet period,and those in the main phase were the strongest.In this case,the direction of the FACs in the main phase showed no preference for tailward or earthward,whereas the direction of the FACs in the recovery phase was mostly tailward.The results suggest that the FACs in the PSBL are closely related to the storm and could be driven by activities in the tail region,where the energy transported from the solar wind to the magnetosphere is stored and released as the storm is evolving.Thus,the FACs are an important medium of energy transport between the tail and the ionosphere,and the PSBL is a significant magnetosphere–ionosphere coupling region in the nightside.
基金supported by National Natural Science Foundation of China(52175279,51705459)Natural Science Foundation of Zhejiang Province(LY20E050022).
文摘Raptors can change the shape and area of their wings to an exceptional degree in a fast and efficient manner,surpassing other birds,insects,or bats.Some researchers have focused on the functional properties of muscle skeletons,mechanics,and flapping robot design.However,the wing motion of the birds of prey has not been measured quantitatively,and synthetic bionic wings with morphing abilities similar to raptors are far from reality.Therefore,in the current study,a 3D suspension system for holding bird carcasses was designed and fabricated to fasten the wings of Falco Peregrinus with a series of morphing postures.Subsequently,the wing skeleton of the falcon was scanned during extending motions using the computed tomography(CT)approach to obtain three consecutive poses.Subsequently,the skeleton was reconstructed to identify the contribution of the forelimb bones to the extending/folding motions.Inspired by these findings,we propose a simple mechanical model with four bones to form a wing-morphing mechanism using the proposed pose optimisation method.Finally,a bionic wing mechanism was implemented to imitate the motion of the falcon wing—divided into inner and outer wings with folding and twisting motions.The results show that the proposed four-bar mechanism can track bone motion paths with high fidelity.
基金supported by the Independent Project Fund of the State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseZhejiang Provincial Natural Science Foundation of China(LQ19C120001)+1 种基金Zhejiang Provincial Natural Science Foundation of China(LY17H030005)National Key Research and Development Program of China(2019YFC0840600&2019YFC0840609).
文摘Partial liver resection is an established treatment for hepatic disorders.However,surgical bleeding,intra-abdominal adhesion and rapid liver regeneration are still major challenges after partial liver resection,associated with morbidity and mortality.Herein,a biomimetic hybrid hydrogel,composed of oxidized hyaluronic acid,glycol chitosan and MenSCs-derived conditioned medium(CM),is presented to address these issues.The hybrid hydrogel is formed through reversible Schiff base,and possesses injectability and self-healing capability.Moreover,hybrid hydrogel exhibits the capabilities of hemostasis,anti-infection,tissue adhesion and controllable release of cargoes.Based on in vivo studies of the multifunctional hybrid hydrogel,it is demonstrated that acute bleeding in partial liver resection can be ceased immediately by virtue of the hemostasis features of hybrid hydrogel.Also,a significant reduction of intra-abdominal adhesion is confirmed in hybrid hydrogel-treated resection surface.Furthermore,upon the treatment of hybrid hydrogel,hepatic cell proliferation and tissue regeneration can be significantly improved due to the controllably released cytokines from MenSCs-derived CM,exerting the effects of mitogenesis and anti-inflammation in vivo.Thus,the biomimetic hybrid hydrogel can be a promising candidate with great potential for application in partial liver resection.