AIM:To define the prevalence and anatomical patterns of paranasal sinus abnormalities(PSA)in thyroid-associated ophthalmopathy(TAO)and to test the hypothesis that TAO is partially driven by contiguous orbital inflamma...AIM:To define the prevalence and anatomical patterns of paranasal sinus abnormalities(PSA)in thyroid-associated ophthalmopathy(TAO)and to test the hypothesis that TAO is partially driven by contiguous orbital inflammation rather than systemic autoimmunity or generalized orbital pressure.METHODS:Data included ophthalmic assessments and a panel of thyroid function and autoimmune biomarkers.Blinded radiological analysis of orbital computed tomography(CT)scans was performed to quantify sinus abnormalities and extraocular muscles(EOMs)involvement.Patients were categorized into two groups based on CT findings,those with no radiological evidence of sinus abnormalities(non-PSA control group)and those with identifiable PSA.Furthermore,ethmoid sinus mucosal biopsies from a subset of TAO patients and noninflammatory controls were subjected to histopathological analysis.RESULTS:Totally 121 TAO patients(mean age 42.4±12.8y,range 10-78y),male:female=42:79,were included.PSA was identified in 44.6%(n=54)of patients,with a distribution anatomically restricted to the maxillary(50.0%isolated)and ethmoid sinuses(18.5%isolated;29.6%combined).Compared to the non-PSA group(n=67),patients with PSA were significantly older(45.1±11.8 vs 40.3±13.2y;P=0.040)and were more likely to be male(55.6%vs 17.9%;P<0.001).They also had significantly higher proptosis(22.1±3.2 vs 20.7±2.9 mm;P<0.001).Medial/inferior rectus involvement was most frequent(88.4%vs 89.3%).Histopathological analysis of sinus mucosa from PSA patients provided direct evidence of pathology,revealing a dense,chronic lymphoplasmacytic infiltrate and submucosal edema,validating the radiological findings as a true inflammatory process.No significant correlation was found with systemic autoimmune markers,including thyroid-stimulating hormone(TSH)receptor antibodies(TRAb,median 4.86 vs 2.71 IU/L,P=0.104).CONCLUSION:TAO is associated with a high prevalence of PSA in a pattern consistent with the orbital anatomy.The correlation with ipsilateral muscle thickening combined with the lack of association with proptosis laterality or systemic biomarkers lend strong support to a model of contiguous inflammation over systemic autoimmunity,a hypothesis that warrants further validation through longitudinal and mechanistic studies.展开更多
Background China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis(PSSP-UL).Although acupuncture is known to be effective for PSSP-UL,there is room to enhance its effi...Background China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis(PSSP-UL).Although acupuncture is known to be effective for PSSP-UL,there is room to enhance its efficacy.Objective This study explored a semi-personalized acupuncture approach for PSSP-UL that used three-dimensional kinematic analysis(3DKA)results to select additional acupoints,and investigated the feasibility,efficacy and safety of this approach.Design,setting,participants and interventions This single-blind,single-center,randomized,controlled trial involved 74 participants who experienced a first-ever ischemic or hemorrhagic stroke with spastic upper limb paresis.The participants were then randomly assigned to the intervention group or the control group in a 1:1 ratio.Both groups received conventional treatments and acupuncture treatment 5 days a week for 4 weeks.The main acupoints in both groups were the same,while participants in the intervention group received additional acupoints selected on the basis of 3DKA results.Follow-up assessments were conducted for 8 weeks after the treatment.Main outcome measures The primary outcome was the Fugl-Meyer Assessment for Upper Extremity(FMA-UE)response rate(≥6-point change)at week 4.Secondary outcomes included changes in motor function(FMA-UE),Brunnstrom recovery stage(BRS),manual muscle test(MMT),spasticity(Modified Ashworth Scale,MAS),and activities of daily life(Modified Barthel Index,MBI)at week 4 and week 12.Results Sixty-four participants completed the trial and underwent analyses.Compared with control group,the intervention group exhibited a significantly higher FMA-UE response rate at week 4(χ^(2)=5.479,P=0.019)and greater improvements in FMA-UE at both week 4 and week 12(both P<0.001).The intervention group also showed bigger improvements from baseline in the MMT grades for shoulder adduction and elbow flexion at weeks 4 and 12 as well as thumb adduction at week 4(P=0.007,P=0.049,P=0.019,P=0.008,P=0.029,respectively).The intervention group showed a better change in the MBI at both week 4 and week 12(P=0.004 and P=0.010,respectively).Although the intervention group had a higher BRS for the hand at week 12(P=0.041),no intergroup differences were observed at week 4(all P>0.05).The two groups showed no differences in MAS grades as well as in BRS for the arm at weeks 4 and 12(all P>0.05).Conclusion Semi-personalized acupuncture prescription based on 3DKA results significantly improved motor function,muscle strength,and activities of daily living in patients with PSSP-UL.展开更多
As a major contributor to methane production in agriculture,there is a need for a suitable methane inhibitor to reduce ruminant methane emissions and minimize the impact on the climate.This work aimed to explore the i...As a major contributor to methane production in agriculture,there is a need for a suitable methane inhibitor to reduce ruminant methane emissions and minimize the impact on the climate.This work aimed to explore the influence of cordycepin on rumen fermentation,gas production,microbiome and their metabolites.A total of 0.00,0.08,0.16,0.32,and 0.64 g L^(–1)cordycepin were added into fermentation bottles containing 2 g total mixed ration for in vitro ruminal fermentation,and then the gas produced and fermentation parameters were measured for each bottle.Samples from the 0 and 0.64 g L^(–1)cordycepin addition were selected for 16S rRNA gene sequencing and metabolome analysis.The result of this experiment indicated that the addition of cordycepin could linearly increase the concentration of total volatile fatty acid,ammonia nitrogen,the proportion of propionate,valerate,and isovalerate,and linearly reduce ruminal pH and methane,carbon dioxide,hydrogen and total gas production,as well as the methane proportion,carbon dioxide proportion and proportion of butyrate.In addition,there was a quadratic relationship between hydrogen and cordycepin addition.At the same time,the relative abundance of Succiniclasticum,Prevotella,Rikenellaceae_RC9_gut_group,NK4A214_group,Christensenellaceae_R_(7)_group,unclassified_F082,Veillonellaceae_UCG_001,Dasytricha,Ophryoscolex,Isotricha,unclassified_Eukaryota,Methanobrevibacter,and Piromyces decreased significantly after adding the maximum dose of cordycepin.In contrast,the relative abundance of Succinivibrio,unclassified_Succinivibrionaceae,Prevotellaceae_UCG_001,unclassified_Lachnospiraceae,Lachnospira,Succinivibrionaceae_UCG_002,Pseudobutyrivibrio,Entodinium,Polyplastron,unclassified_Methanomethylophilaceae,Methanosphaera,and Candidatus_Methanomethylophilus increased significantly.Metabolic pathways such as biosynthesis of unsaturated fatty acids and purine metabolism and metabolites such as arachidonic acid,adenine,and 2′-deoxyguanosine were also affected by the addition of cordycepin.Based on this,we conclude that cordycepin is an effective methane emission inhibitor that can change the rumen metabolites and fermentation parameters by influencing the rumen microbiome,thus regulating rumen methane production.This experiment may provide a potential theoretical reference for developing Cordyceps byproduct or additives containing cordycepin as methane inhibitors.展开更多
Acupuncture-moxibustion can promote recovery from the sequelae of ischemic stroke.However,its mechanism of action has not yet been fully elucidated.This paper introduces the mechanism of acupuncture-moxibustion in all...Acupuncture-moxibustion can promote recovery from the sequelae of ischemic stroke.However,its mechanism of action has not yet been fully elucidated.This paper introduces the mechanism of acupuncture-moxibustion in alleviating rehabilitation of ischemic stroke sequelae.The regulatory mechanism of acupuncture-moxibustion was analyzed for limb movement disorders,cognitive impairment,depression,epilepsy,dysphagia,and insomnia after stroke from four aspects(promoting neuronal growth and cell proliferation,regulating cerebral blood flow,modulating neurochemicals,and suppressing cell apoptosis).This study provides theoretical support for the wide application of acupuncture-moxibustion in rehabilitation after ischemic stroke.展开更多
As a new choice for the treatment of degenerative lumbar disease, artificial lumbar disc replacement has been widely used in clinical surgery. The finite element is a very effective method to predict and simulate the ...As a new choice for the treatment of degenerative lumbar disease, artificial lumbar disc replacement has been widely used in clinical surgery. The finite element is a very effective method to predict and simulate the surgery effect. The purpose of this paper is to review the applications of finite element in artificial lumbar disc replacement, such as design of artificial lumbar disc prosthesis, risk and effect evaluation of artificial lumbar disc replacement, and assessment of operation methods. Lastly, we discuss the future development of finite element method applied in this field, including personalized design of the prosthesis, postoperative behavior guide, and artificial lumbar disc replacement combined with fusion surgery. In conclusion, as an invaluable complement to biomechanical experiments and clinical studies, the finite element method makes important contributions to our understanding of biomechanics of intervertebral disc, and plays an important role in the field of artificial lumbar disc replacement.展开更多
In response to the limitations of conventional thermal management materials,such as restricted functionality,narrow temperature adaptability,and poor breathability,flexibility,and stretchability,this highlight present...In response to the limitations of conventional thermal management materials,such as restricted functionality,narrow temperature adaptability,and poor breathability,flexibility,and stretchability,this highlight presents a breathable,dual-mode leather-like nanotextile(LNT)with asymmetric pleated photonic microstructures and Janus wettability.This innovative design enables efficient and adaptive personal thermal regulation across a broad temperature range,while significantly improving wearer comfort through optimized moisture management and mechanical compliance.The proposed LNT opens new pathways for developing nextgeneration smart textiles,showing great potential for real-world applications in dynamic and demanding environments.展开更多
Elucidating the relationship between spin excitations and fermiology is essential for clarifying the pairing mechanism in iron-based superconductors(FeSCs).Here,we report inelastic neutron scattering results on the ho...Elucidating the relationship between spin excitations and fermiology is essential for clarifying the pairing mechanism in iron-based superconductors(FeSCs).Here,we report inelastic neutron scattering results on the hole overdoped Ba_(0.4)K_(0.6)Fe_(2)As_(2) near a Lifshitz transition,where the electron pocket at M point is nearly replaced by four hole pockets.In the normal state,the spin excitations is observed at incommensurate wave vectors with a chimney-like dispersion.By cooling down to the superconducting state,a neutron spin resonance mode emerges with a peak energy of Er=14-15 meV,weakly modulated along the L-direction.The incommensurability notably increases at low energies,giving rise to downward dispersions of the resonance mode.This behavior contrasts sharply with the upward dispersions of resonance observed in optimally doped Ba_(0.67)K_(0.33)Fe_(2)As_(2) contributed by the hole to electron scattering,but resembles those in KFe_(2)As_(2) and KCa_(2)Fe_(4)As_(4)F_(2) where the fermiology is dominated by hole pockets.These results highlight the critical role of electronic structure modifications near the Fermi level,especially in governing interband scattering under imperfect nesting conditions,which fundamentally shape the spin dynamics of FeSCs.展开更多
Osteomyelitis remains a global challenge in the field of orthopedics.Even after standard debridement and antibiotic-assisted treatment,the long-term recurrence rate remains at 20%-30%.Given the dynamic changes in immu...Osteomyelitis remains a global challenge in the field of orthopedics.Even after standard debridement and antibiotic-assisted treatment,the long-term recurrence rate remains at 20%-30%.Given the dynamic changes in immune responses and defense mechanisms during bone infection,as well as the complex“race for the surface”involving bacterial adhesion and host cells(macrophages and tissue cells)on implant surfaces,biomaterials with immunomodulatory functions have attracted considerable attention.Macrophages,as crucial components of the immune system,participate in the inflammatory regulation and tissue remodeling of bone infections through highly plastic polarization mechanisms after bacterial invasion.The different microenvironmental characteristics and therapeutic needs at different stages of bone infection highlight the promising applications of biomaterials capable of macrophage polarization remodeling and sequential regulation.In this review,we provide a detailed discussion of the complex immune regulatory patterns in the bone infection microenvironment and the critical functions of macrophage polarization.We then explore how implant surface properties influence bacterial adhesion and macrophage function,highlighting the importance of achieving precise and dynamic regulation of macrophage polarization based on the Race for the Surface theory.Furthermore,we focus on recent advances,potential challenges,and opportunities in biomaterial-mediated macrophage polarization remodeling and sequential modulation strategies across different stages of osteomyelitis,aiming to offer insights that may accelerate the clinical translation of novel biomaterial-based macrophage immunotherapies.展开更多
As a doctor,being away from patients is like being a fish out of water.As long as I have breath,I will do something for my patients.-Life motto of Dr.Zijiang Liu As a pioneer and founder of interventional radiology in...As a doctor,being away from patients is like being a fish out of water.As long as I have breath,I will do something for my patients.-Life motto of Dr.Zijiang Liu As a pioneer and founder of interventional radiology in China,Professor Zijiang Liu(1925-2003)paved new pathways for disciplinary construction and clinical practice in this field.Professor Liu brought hope to countless patients with his exceptional wisdom and outstanding dedication.Born in Shaoxing,Zhejiang Province,on 4 October 1925,Professor Liu was inspired to pursue a career in medicine after suffering from tuberculosis in his youth.展开更多
Rare earths,as a strategic mineral resource,play a vital role in high-tech industries such as aerospace,national defense and military,electronic information,and new energy.With the accelerated evolution of the new rou...Rare earths,as a strategic mineral resource,play a vital role in high-tech industries such as aerospace,national defense and military,electronic information,and new energy.With the accelerated evolution of the new round of technological revolution and industrial transformation,global supply chain security risks have become more prominent.The focus of major countries'resource security assurance has also shifted from bulk minerals to critical minerals.展开更多
Quantum photonic integrated circuits offer enhanced stability and scalability for quantum communications,sensing, and computing. Transverse modes in multimode waveguides enable high-dimensional scalability and versati...Quantum photonic integrated circuits offer enhanced stability and scalability for quantum communications,sensing, and computing. Transverse modes in multimode waveguides enable high-dimensional scalability and versatile photon manipulation, but practical adoption requires compact and fabrication-tolerant quantum interference devices. Here, we present an ultra-compact taper-stepped beamsplitter that enables quantum interference between photon pairs in different transverse modes, and cascade it to realize NOON state interferometry. We experimentally achieve high visibilities of 93.9% for HOM interference and 86.5% for NOON state interference,demonstrating that efficient mode interference with active tuning can be realized on this platform.展开更多
Extensive evidence demonstrates that a healthy and well-balanced gut microbiota profoundly influences host nutrient absorption,immunity,and metabolism.Unlike mammals,early microbiota colonization in commercial poultry...Extensive evidence demonstrates that a healthy and well-balanced gut microbiota profoundly influences host nutrient absorption,immunity,and metabolism.Unlike mammals,early microbiota colonization in commercial poultry largely depends on the environment as chicks hatch in incubators under a relatively sterile environment(egg and incubator sterilization)without maternal-offspring interaction.The early gut microbiota remains unsaturated,providing a critical window for modulation and influencing the subsequent microbiota succession,which may have long-term health outcomes.Microbiota transplantation(MT)involves transferring the microbiota from a donor to a recipient to modulate the recipient’s microbiota toward a desired state.Successfully applied in human medicine,MT is also gaining attention in poultry production to modulate intestinal health.This review comprehensively explores factors affecting MT,its mechanisms,and its potential applications in chickens,providing insights for further research and commercial use.展开更多
Chiroptical responses of chiral plasmonic nanoparticles are influenced by their morphology, yet the impact of supporting substrates is significant but not fully understood. In this study, we numerically investigate th...Chiroptical responses of chiral plasmonic nanoparticles are influenced by their morphology, yet the impact of supporting substrates is significant but not fully understood. In this study, we numerically investigate the effect of high-refractive-index dielectric substrates on the chiroptical response of individual chiral plasmonic nanoparticles. Using Au helicoid as an example, we observe that as the refractive index of the supporting substrate increases, there is a remarkable enhancement in the dissymmetry factor(g-factor), along with an abnormal peak separation between the absorption and scattering g-factor spectra, which is different from typical observations. This unique chiroptical evolution is attributed to the strong plasmon hybridization under circularly polarized in-plane excitation. To validate the universality of these findings, we vary the size and material of the helicoid, confirming the consistent occurrence of this phenomenon. Our findings provide valuable insights into the substrate effect of chiral plasmonic nanoparticles to facilitate their applications in on-chip devices and sensing technologies.展开更多
When the protective and protected systems are detached,the former can be allowed to absorb the kinetic energy of the impacting projectile through large deformation without considering the back face signature of the la...When the protective and protected systems are detached,the former can be allowed to absorb the kinetic energy of the impacting projectile through large deformation without considering the back face signature of the latter.This paper presents a novel double-face knitted fabric(DFKF)designed for this very impacting scenario.Shooting tests equipped with high-speed camera were used to characterize the ballistic performance with the impact velocities ranging from 100 m/s to 450 m/s.The results showed that the ballistic limits(V_(bl))of DFKF are approximately triple and double that of its counterpart UD and plain fabrics,respectively.For mass-normalized metrics,the specific energy absorption(SEA)is 250%and 350%greater than the UD and plain fabrics at their corresponding V_(bl)s.The quasi-static tests showed that the DFKF displayed greater resilience,crease recovery properties,and flexibility,which also made it an especially better candidate than UD and plain weaves for the design of umbrella surface cloth.It was also found that DFKF is dependent on yarn count and the incorporation of spandex.A prototype anti-ballistic umbrella is manufactured using DFKF made of 200D multi-filament yarn.The ballistic performance is also sensitive to the impact site when the umbrella is subjected to impact.展开更多
Accurately forecasting ecosystem services is critical for enhancing our understanding and improving management practices within nature reserves,particularly in light of climate change,land use/cover changes,and their ...Accurately forecasting ecosystem services is critical for enhancing our understanding and improving management practices within nature reserves,particularly in light of climate change,land use/cover changes,and their complex interactions.However,existing studies often fail to fully consider vegetation response,constituting a gap in the comprehensive assessment of changes in ecosystem services.Therefore,a coupled model framework integrating climate change,land use change,and vegetation dynamics was developed to allow for the simulation of dynamic ecosystem service scenarios throughout the twenty-first century.The Jiulianshan National Nature Reserve in Jiangxi Province was considered as the study area.The results showed that ecosystem services and their synergistic effects will be optimized under scenarios that emphasize strict protection of ecological lands and incorporating the SSP1-2.6 scenario.However,sustaining optimized ecosystem services poses significant challenges in scenarios characterized by resource-intensive development and ongoing climate warming,as in the SSP5-8.5 scenario.Notably,discernible variations exist in balancing and synergizing the management of ecosystem services across diverse land uses and forest types.Our study underscores the importance of integrating vegetation response into the framework of ecosystem service forecasting,which is essential for assisting nature reserves in effectively addressing the multifaceted risks associated with climate change and rapid socio-economic development.展开更多
Gecko-inspired robots have significant potential applications;however,deviations in the yaw direction during locomotion are inevitable for legged robots that lack external sensing.These deviations cause the robot to s...Gecko-inspired robots have significant potential applications;however,deviations in the yaw direction during locomotion are inevitable for legged robots that lack external sensing.These deviations cause the robot to stray from its intended path.Therefore,a cost-effective and straightforward solution is essential for reducing this deviation.In nature,the tail is often used to maintain balance and stability.Similarly,it has been used in robots to improve manoeuvrability and stability.Our aim is to reduce this deviation using a morphological computation approach,specifically by adding a tail.To test this hypothesis,we investigated four different tails(rigid plate,rigid gecko-shaped,soft plate,and soft gecko-shaped)and assessed the deviation of the robot with these tails on different slopes.Additionally,to evaluate the influence of different tail parameters,such as material,shape,and linkage,we investigated the locomotion performance in terms of the robot's climbing speed on slopes,its ability to turn at narrow corners,and the resistance of the tails to external disturbances.A new auto-reset joint was designed to ensure that a disturbed tail could be quickly reset.Our results demonstrate that the yaw deviation of the robot can be reduced by applying a tail.Among the four tails,the soft gecko-shaped tail was the most effective for most tasks.In summary,our findings demonstrate the functional role of the tail in reducing yaw deviation,improving climbing ability and stability and provide a reference for selecting the most suitable tail for geckoinspired robots.展开更多
基金Supported by The National Natural Science Foundation of China(No.82101180)the Fund for Beijing Science&Technology Development of TCM(No.BJZYYB-2023-17)the Beijing Municipal Natural Science Foundation grant(No.7252093).
文摘AIM:To define the prevalence and anatomical patterns of paranasal sinus abnormalities(PSA)in thyroid-associated ophthalmopathy(TAO)and to test the hypothesis that TAO is partially driven by contiguous orbital inflammation rather than systemic autoimmunity or generalized orbital pressure.METHODS:Data included ophthalmic assessments and a panel of thyroid function and autoimmune biomarkers.Blinded radiological analysis of orbital computed tomography(CT)scans was performed to quantify sinus abnormalities and extraocular muscles(EOMs)involvement.Patients were categorized into two groups based on CT findings,those with no radiological evidence of sinus abnormalities(non-PSA control group)and those with identifiable PSA.Furthermore,ethmoid sinus mucosal biopsies from a subset of TAO patients and noninflammatory controls were subjected to histopathological analysis.RESULTS:Totally 121 TAO patients(mean age 42.4±12.8y,range 10-78y),male:female=42:79,were included.PSA was identified in 44.6%(n=54)of patients,with a distribution anatomically restricted to the maxillary(50.0%isolated)and ethmoid sinuses(18.5%isolated;29.6%combined).Compared to the non-PSA group(n=67),patients with PSA were significantly older(45.1±11.8 vs 40.3±13.2y;P=0.040)and were more likely to be male(55.6%vs 17.9%;P<0.001).They also had significantly higher proptosis(22.1±3.2 vs 20.7±2.9 mm;P<0.001).Medial/inferior rectus involvement was most frequent(88.4%vs 89.3%).Histopathological analysis of sinus mucosa from PSA patients provided direct evidence of pathology,revealing a dense,chronic lymphoplasmacytic infiltrate and submucosal edema,validating the radiological findings as a true inflammatory process.No significant correlation was found with systemic autoimmune markers,including thyroid-stimulating hormone(TSH)receptor antibodies(TRAb,median 4.86 vs 2.71 IU/L,P=0.104).CONCLUSION:TAO is associated with a high prevalence of PSA in a pattern consistent with the orbital anatomy.The correlation with ipsilateral muscle thickening combined with the lack of association with proptosis laterality or systemic biomarkers lend strong support to a model of contiguous inflammation over systemic autoimmunity,a hypothesis that warrants further validation through longitudinal and mechanistic studies.
基金funded by Science Foundation for Youth supported by Shanghai Municipal Health Commission(No.20204Y0313)Sailing Program with the support of Science and Technology Commission of Shanghai Municipality(No.21YF1443800).
文摘Background China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis(PSSP-UL).Although acupuncture is known to be effective for PSSP-UL,there is room to enhance its efficacy.Objective This study explored a semi-personalized acupuncture approach for PSSP-UL that used three-dimensional kinematic analysis(3DKA)results to select additional acupoints,and investigated the feasibility,efficacy and safety of this approach.Design,setting,participants and interventions This single-blind,single-center,randomized,controlled trial involved 74 participants who experienced a first-ever ischemic or hemorrhagic stroke with spastic upper limb paresis.The participants were then randomly assigned to the intervention group or the control group in a 1:1 ratio.Both groups received conventional treatments and acupuncture treatment 5 days a week for 4 weeks.The main acupoints in both groups were the same,while participants in the intervention group received additional acupoints selected on the basis of 3DKA results.Follow-up assessments were conducted for 8 weeks after the treatment.Main outcome measures The primary outcome was the Fugl-Meyer Assessment for Upper Extremity(FMA-UE)response rate(≥6-point change)at week 4.Secondary outcomes included changes in motor function(FMA-UE),Brunnstrom recovery stage(BRS),manual muscle test(MMT),spasticity(Modified Ashworth Scale,MAS),and activities of daily life(Modified Barthel Index,MBI)at week 4 and week 12.Results Sixty-four participants completed the trial and underwent analyses.Compared with control group,the intervention group exhibited a significantly higher FMA-UE response rate at week 4(χ^(2)=5.479,P=0.019)and greater improvements in FMA-UE at both week 4 and week 12(both P<0.001).The intervention group also showed bigger improvements from baseline in the MMT grades for shoulder adduction and elbow flexion at weeks 4 and 12 as well as thumb adduction at week 4(P=0.007,P=0.049,P=0.019,P=0.008,P=0.029,respectively).The intervention group showed a better change in the MBI at both week 4 and week 12(P=0.004 and P=0.010,respectively).Although the intervention group had a higher BRS for the hand at week 12(P=0.041),no intergroup differences were observed at week 4(all P>0.05).The two groups showed no differences in MAS grades as well as in BRS for the arm at weeks 4 and 12(all P>0.05).Conclusion Semi-personalized acupuncture prescription based on 3DKA results significantly improved motor function,muscle strength,and activities of daily living in patients with PSSP-UL.
基金financially supported by the National Key Research and Development Program of China(2023YFD2000701)the Natural Science Foundation of Heilongjiang Province,China(YQ2023C011)+1 种基金the Key Research and Development Program of Heilongjiang Province,China(Grant no.2022ZX01A24)the Key Laboratory of Low-carbon Green Agriculture in Northeastern China,Ministry of Agriculture and Rural Affairs of China(LCGANE14)。
文摘As a major contributor to methane production in agriculture,there is a need for a suitable methane inhibitor to reduce ruminant methane emissions and minimize the impact on the climate.This work aimed to explore the influence of cordycepin on rumen fermentation,gas production,microbiome and their metabolites.A total of 0.00,0.08,0.16,0.32,and 0.64 g L^(–1)cordycepin were added into fermentation bottles containing 2 g total mixed ration for in vitro ruminal fermentation,and then the gas produced and fermentation parameters were measured for each bottle.Samples from the 0 and 0.64 g L^(–1)cordycepin addition were selected for 16S rRNA gene sequencing and metabolome analysis.The result of this experiment indicated that the addition of cordycepin could linearly increase the concentration of total volatile fatty acid,ammonia nitrogen,the proportion of propionate,valerate,and isovalerate,and linearly reduce ruminal pH and methane,carbon dioxide,hydrogen and total gas production,as well as the methane proportion,carbon dioxide proportion and proportion of butyrate.In addition,there was a quadratic relationship between hydrogen and cordycepin addition.At the same time,the relative abundance of Succiniclasticum,Prevotella,Rikenellaceae_RC9_gut_group,NK4A214_group,Christensenellaceae_R_(7)_group,unclassified_F082,Veillonellaceae_UCG_001,Dasytricha,Ophryoscolex,Isotricha,unclassified_Eukaryota,Methanobrevibacter,and Piromyces decreased significantly after adding the maximum dose of cordycepin.In contrast,the relative abundance of Succinivibrio,unclassified_Succinivibrionaceae,Prevotellaceae_UCG_001,unclassified_Lachnospiraceae,Lachnospira,Succinivibrionaceae_UCG_002,Pseudobutyrivibrio,Entodinium,Polyplastron,unclassified_Methanomethylophilaceae,Methanosphaera,and Candidatus_Methanomethylophilus increased significantly.Metabolic pathways such as biosynthesis of unsaturated fatty acids and purine metabolism and metabolites such as arachidonic acid,adenine,and 2′-deoxyguanosine were also affected by the addition of cordycepin.Based on this,we conclude that cordycepin is an effective methane emission inhibitor that can change the rumen metabolites and fermentation parameters by influencing the rumen microbiome,thus regulating rumen methane production.This experiment may provide a potential theoretical reference for developing Cordyceps byproduct or additives containing cordycepin as methane inhibitors.
基金Supported by Traditional Chinese Medicine Research Project of Heilongjiang Province:ZHY2020-062.
文摘Acupuncture-moxibustion can promote recovery from the sequelae of ischemic stroke.However,its mechanism of action has not yet been fully elucidated.This paper introduces the mechanism of acupuncture-moxibustion in alleviating rehabilitation of ischemic stroke sequelae.The regulatory mechanism of acupuncture-moxibustion was analyzed for limb movement disorders,cognitive impairment,depression,epilepsy,dysphagia,and insomnia after stroke from four aspects(promoting neuronal growth and cell proliferation,regulating cerebral blood flow,modulating neurochemicals,and suppressing cell apoptosis).This study provides theoretical support for the wide application of acupuncture-moxibustion in rehabilitation after ischemic stroke.
文摘As a new choice for the treatment of degenerative lumbar disease, artificial lumbar disc replacement has been widely used in clinical surgery. The finite element is a very effective method to predict and simulate the surgery effect. The purpose of this paper is to review the applications of finite element in artificial lumbar disc replacement, such as design of artificial lumbar disc prosthesis, risk and effect evaluation of artificial lumbar disc replacement, and assessment of operation methods. Lastly, we discuss the future development of finite element method applied in this field, including personalized design of the prosthesis, postoperative behavior guide, and artificial lumbar disc replacement combined with fusion surgery. In conclusion, as an invaluable complement to biomechanical experiments and clinical studies, the finite element method makes important contributions to our understanding of biomechanics of intervertebral disc, and plays an important role in the field of artificial lumbar disc replacement.
文摘In response to the limitations of conventional thermal management materials,such as restricted functionality,narrow temperature adaptability,and poor breathability,flexibility,and stretchability,this highlight presents a breathable,dual-mode leather-like nanotextile(LNT)with asymmetric pleated photonic microstructures and Janus wettability.This innovative design enables efficient and adaptive personal thermal regulation across a broad temperature range,while significantly improving wearer comfort through optimized moisture management and mechanical compliance.The proposed LNT opens new pathways for developing nextgeneration smart textiles,showing great potential for real-world applications in dynamic and demanding environments.
基金supported by the National Key Research and Development Program of China(Grant Nos.2023YFA1406100,2018YFA0704200,2022YFA1403400 and 2021YFA1400400)the National Natural Science Foundation of China(Grant Nos.11822411 and 12274444)+2 种基金the Strategic Priority Research Program(B)of the CAS(Grant Nos.XDB25000000 and XDB33000000)K.C.Wong Education Foundation(GJTD-2020-01)AP by HBNI-RRCAT and MPCST under the FTYS program。
文摘Elucidating the relationship between spin excitations and fermiology is essential for clarifying the pairing mechanism in iron-based superconductors(FeSCs).Here,we report inelastic neutron scattering results on the hole overdoped Ba_(0.4)K_(0.6)Fe_(2)As_(2) near a Lifshitz transition,where the electron pocket at M point is nearly replaced by four hole pockets.In the normal state,the spin excitations is observed at incommensurate wave vectors with a chimney-like dispersion.By cooling down to the superconducting state,a neutron spin resonance mode emerges with a peak energy of Er=14-15 meV,weakly modulated along the L-direction.The incommensurability notably increases at low energies,giving rise to downward dispersions of the resonance mode.This behavior contrasts sharply with the upward dispersions of resonance observed in optimally doped Ba_(0.67)K_(0.33)Fe_(2)As_(2) contributed by the hole to electron scattering,but resembles those in KFe_(2)As_(2) and KCa_(2)Fe_(4)As_(4)F_(2) where the fermiology is dominated by hole pockets.These results highlight the critical role of electronic structure modifications near the Fermi level,especially in governing interband scattering under imperfect nesting conditions,which fundamentally shape the spin dynamics of FeSCs.
基金supported by National Natural Science Foundation of China(Grant No.82072392)Yunnan Orthopedics and Sports Rehabilitation Clinical Medicine Research Center(Grant No.202102AA310068)+2 种基金Yunnan Clinical Medical Center for Traumatology and Orthopedics(Grant No.ZX20191001)Basic research project of Science and Technology Department of Yunnan Province(Grant No.202301AC070621)Scientific Research Fund Project Department of Education of Yunnan Province(Grant No.2024Y251)。
文摘Osteomyelitis remains a global challenge in the field of orthopedics.Even after standard debridement and antibiotic-assisted treatment,the long-term recurrence rate remains at 20%-30%.Given the dynamic changes in immune responses and defense mechanisms during bone infection,as well as the complex“race for the surface”involving bacterial adhesion and host cells(macrophages and tissue cells)on implant surfaces,biomaterials with immunomodulatory functions have attracted considerable attention.Macrophages,as crucial components of the immune system,participate in the inflammatory regulation and tissue remodeling of bone infections through highly plastic polarization mechanisms after bacterial invasion.The different microenvironmental characteristics and therapeutic needs at different stages of bone infection highlight the promising applications of biomaterials capable of macrophage polarization remodeling and sequential regulation.In this review,we provide a detailed discussion of the complex immune regulatory patterns in the bone infection microenvironment and the critical functions of macrophage polarization.We then explore how implant surface properties influence bacterial adhesion and macrophage function,highlighting the importance of achieving precise and dynamic regulation of macrophage polarization based on the Race for the Surface theory.Furthermore,we focus on recent advances,potential challenges,and opportunities in biomaterial-mediated macrophage polarization remodeling and sequential modulation strategies across different stages of osteomyelitis,aiming to offer insights that may accelerate the clinical translation of novel biomaterial-based macrophage immunotherapies.
文摘As a doctor,being away from patients is like being a fish out of water.As long as I have breath,I will do something for my patients.-Life motto of Dr.Zijiang Liu As a pioneer and founder of interventional radiology in China,Professor Zijiang Liu(1925-2003)paved new pathways for disciplinary construction and clinical practice in this field.Professor Liu brought hope to countless patients with his exceptional wisdom and outstanding dedication.Born in Shaoxing,Zhejiang Province,on 4 October 1925,Professor Liu was inspired to pursue a career in medicine after suffering from tuberculosis in his youth.
文摘Rare earths,as a strategic mineral resource,play a vital role in high-tech industries such as aerospace,national defense and military,electronic information,and new energy.With the accelerated evolution of the new round of technological revolution and industrial transformation,global supply chain security risks have become more prominent.The focus of major countries'resource security assurance has also shifted from bulk minerals to critical minerals.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFB2803100)the National Major Scientific Research Instrument Development Project(Grant No.22127901)+6 种基金the National Natural Science Foundation of China (Grant No.62305367)the Shanghai Natural Science Foundation (Grant No.25ZR1401379)the Natural Science Foundation of Zhejiang Province,China (Grant No.LZ24F050001)the Innovation Program for Quantum Science and Technology (Grant Nos.2021ZD0301500 and 2021ZD0303200)the National Natural Science Foundation of China (Grant Nos.T2325022,U23A2074,62061160487,and 62275240)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-049)the Fundamental Research Funds for the Central Universities。
文摘Quantum photonic integrated circuits offer enhanced stability and scalability for quantum communications,sensing, and computing. Transverse modes in multimode waveguides enable high-dimensional scalability and versatile photon manipulation, but practical adoption requires compact and fabrication-tolerant quantum interference devices. Here, we present an ultra-compact taper-stepped beamsplitter that enables quantum interference between photon pairs in different transverse modes, and cascade it to realize NOON state interferometry. We experimentally achieve high visibilities of 93.9% for HOM interference and 86.5% for NOON state interference,demonstrating that efficient mode interference with active tuning can be realized on this platform.
基金Haoran Zhao would like to acknowledge the support provided by China Scholarship Council(CSC)of the Ministry of Education,P.R.China(CSC No.202206850006)supported by funding from VLAIO with project number(HBC.2023.0172),HEPPY Markers-Establishment of biomarkers of Health and Eubiosis in Pigs and Poultry.
文摘Extensive evidence demonstrates that a healthy and well-balanced gut microbiota profoundly influences host nutrient absorption,immunity,and metabolism.Unlike mammals,early microbiota colonization in commercial poultry largely depends on the environment as chicks hatch in incubators under a relatively sterile environment(egg and incubator sterilization)without maternal-offspring interaction.The early gut microbiota remains unsaturated,providing a critical window for modulation and influencing the subsequent microbiota succession,which may have long-term health outcomes.Microbiota transplantation(MT)involves transferring the microbiota from a donor to a recipient to modulate the recipient’s microbiota toward a desired state.Successfully applied in human medicine,MT is also gaining attention in poultry production to modulate intestinal health.This review comprehensively explores factors affecting MT,its mechanisms,and its potential applications in chickens,providing insights for further research and commercial use.
基金supported by the National Natural Science Foundation of China(Grant Nos.62575185 and 62205223)Guangdong Basic and Applied Basic Research Foundation (Grant Nos.2023A1515110091 and 2023A1515011455)+1 种基金Department of Science and Technology of Guangdong Province(Grant Nos.2023QN10C200 and 2023QN10X082)Science and Technology Innovation Commission of Shenzhen (Grant Nos.20231121120748002 and JSGGKQTD20221101115701006)。
文摘Chiroptical responses of chiral plasmonic nanoparticles are influenced by their morphology, yet the impact of supporting substrates is significant but not fully understood. In this study, we numerically investigate the effect of high-refractive-index dielectric substrates on the chiroptical response of individual chiral plasmonic nanoparticles. Using Au helicoid as an example, we observe that as the refractive index of the supporting substrate increases, there is a remarkable enhancement in the dissymmetry factor(g-factor), along with an abnormal peak separation between the absorption and scattering g-factor spectra, which is different from typical observations. This unique chiroptical evolution is attributed to the strong plasmon hybridization under circularly polarized in-plane excitation. To validate the universality of these findings, we vary the size and material of the helicoid, confirming the consistent occurrence of this phenomenon. Our findings provide valuable insights into the substrate effect of chiral plasmonic nanoparticles to facilitate their applications in on-chip devices and sensing technologies.
基金support from the following for aspects of the research,authorship,and/or publication of this article:National Natural Science Foundation of China(Grant No.12302187)Innovation Program of Wuhan-Shuguang Project(Grant No.202201080102).
文摘When the protective and protected systems are detached,the former can be allowed to absorb the kinetic energy of the impacting projectile through large deformation without considering the back face signature of the latter.This paper presents a novel double-face knitted fabric(DFKF)designed for this very impacting scenario.Shooting tests equipped with high-speed camera were used to characterize the ballistic performance with the impact velocities ranging from 100 m/s to 450 m/s.The results showed that the ballistic limits(V_(bl))of DFKF are approximately triple and double that of its counterpart UD and plain fabrics,respectively.For mass-normalized metrics,the specific energy absorption(SEA)is 250%and 350%greater than the UD and plain fabrics at their corresponding V_(bl)s.The quasi-static tests showed that the DFKF displayed greater resilience,crease recovery properties,and flexibility,which also made it an especially better candidate than UD and plain weaves for the design of umbrella surface cloth.It was also found that DFKF is dependent on yarn count and the incorporation of spandex.A prototype anti-ballistic umbrella is manufactured using DFKF made of 200D multi-filament yarn.The ballistic performance is also sensitive to the impact site when the umbrella is subjected to impact.
基金supported by the National Natural Science Foundation of China (32160292, 32471681, and 32201575)Jiangxi “Double Thousand Plan”(jxsq2020101080)+1 种基金the Natural Science Foundation of Jiangxi Province (20224BAB205008, 20224BAB213033, and 20242BAB2538)Jiangxi Province Science and Technology+Water Resources” Joint Plan Project (2023KSG01001 and 2022KSG01010)
文摘Accurately forecasting ecosystem services is critical for enhancing our understanding and improving management practices within nature reserves,particularly in light of climate change,land use/cover changes,and their complex interactions.However,existing studies often fail to fully consider vegetation response,constituting a gap in the comprehensive assessment of changes in ecosystem services.Therefore,a coupled model framework integrating climate change,land use change,and vegetation dynamics was developed to allow for the simulation of dynamic ecosystem service scenarios throughout the twenty-first century.The Jiulianshan National Nature Reserve in Jiangxi Province was considered as the study area.The results showed that ecosystem services and their synergistic effects will be optimized under scenarios that emphasize strict protection of ecological lands and incorporating the SSP1-2.6 scenario.However,sustaining optimized ecosystem services poses significant challenges in scenarios characterized by resource-intensive development and ongoing climate warming,as in the SSP5-8.5 scenario.Notably,discernible variations exist in balancing and synergizing the management of ecosystem services across diverse land uses and forest types.Our study underscores the importance of integrating vegetation response into the framework of ecosystem service forecasting,which is essential for assisting nature reserves in effectively addressing the multifaceted risks associated with climate change and rapid socio-economic development.
基金supported by the National Key Research&Development Program of China(Grant No.2020YFB1313504)the State Key Laboratory of Mechanics and Control for Aerospace Structures of Nanjing University of Aeronautics and Astronautics.
文摘Gecko-inspired robots have significant potential applications;however,deviations in the yaw direction during locomotion are inevitable for legged robots that lack external sensing.These deviations cause the robot to stray from its intended path.Therefore,a cost-effective and straightforward solution is essential for reducing this deviation.In nature,the tail is often used to maintain balance and stability.Similarly,it has been used in robots to improve manoeuvrability and stability.Our aim is to reduce this deviation using a morphological computation approach,specifically by adding a tail.To test this hypothesis,we investigated four different tails(rigid plate,rigid gecko-shaped,soft plate,and soft gecko-shaped)and assessed the deviation of the robot with these tails on different slopes.Additionally,to evaluate the influence of different tail parameters,such as material,shape,and linkage,we investigated the locomotion performance in terms of the robot's climbing speed on slopes,its ability to turn at narrow corners,and the resistance of the tails to external disturbances.A new auto-reset joint was designed to ensure that a disturbed tail could be quickly reset.Our results demonstrate that the yaw deviation of the robot can be reduced by applying a tail.Among the four tails,the soft gecko-shaped tail was the most effective for most tasks.In summary,our findings demonstrate the functional role of the tail in reducing yaw deviation,improving climbing ability and stability and provide a reference for selecting the most suitable tail for geckoinspired robots.