To develop an improved approach in achieving an excellent combination of high strength and ductility,the solutionized Al?Cu?Li plates were subjected to rolling at cryogenic and room temperatures,respectively,to a redu...To develop an improved approach in achieving an excellent combination of high strength and ductility,the solutionized Al?Cu?Li plates were subjected to rolling at cryogenic and room temperatures,respectively,to a reduction of83%,followed by aging treatment at160°C.The results indicate that Al?Cu?Li alloys through cryogenic rolling followed by aging treatment possess better mechanical properties.Rolling at cryogenic temperature produces a high density of dislocations because of the suppression of dynamic recovery,which in turn promotes the precipitation of T1(Al2CuLi)precipitates during aging.Such high density of T1precipitates enable effective dislocation pinning,leading to an increase in strength and ductility.In contrast,room temperature rolled alloys after aging treatment exhibit lower strength and ductility due to low density of T1precipitates in the grain interior and high density of T1precipitates around subgrain boundaries.展开更多
The influence of Al3Zr particles on the hot compression behavior and processing map(PM)of Al-Cu-Li based alloys under isothermal plane-strain compression in the temperature range of 400-500℃and at the strain rates of...The influence of Al3Zr particles on the hot compression behavior and processing map(PM)of Al-Cu-Li based alloys under isothermal plane-strain compression in the temperature range of 400-500℃and at the strain rates of 0.01-10 s^-1 was investigated.The corresponding microstructure was analyzed using optical microscopy(OM),electron back-scattered diffraction(EBSD)and transmission electron microscope(TEM).The results showed that dynamic recovery(DRV)played a greater role than dynamic recrystallization(DRX)in dynamic softening.At low temperatures,the Al3Zr particles were the significant barriers to inhibit DRV and DRX grain growth.When the temperature reached 500℃,the Al3Zr particles readily spread along grain boundaries just like a necklace due to the dissolution of Al3Zr particles and rapid diffusion of Zr through grain boundary,resulting in generating the macroscopic cracks and forming an instability domain at 490-500℃,0.01 s^-1 in the PM.展开更多
Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the...Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013.展开更多
基金Projects (106112015CDJXZ138803,106112015CDJXY130003) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (51421001) supported by National Natural Science Foundation of China
文摘To develop an improved approach in achieving an excellent combination of high strength and ductility,the solutionized Al?Cu?Li plates were subjected to rolling at cryogenic and room temperatures,respectively,to a reduction of83%,followed by aging treatment at160°C.The results indicate that Al?Cu?Li alloys through cryogenic rolling followed by aging treatment possess better mechanical properties.Rolling at cryogenic temperature produces a high density of dislocations because of the suppression of dynamic recovery,which in turn promotes the precipitation of T1(Al2CuLi)precipitates during aging.Such high density of T1precipitates enable effective dislocation pinning,leading to an increase in strength and ductility.In contrast,room temperature rolled alloys after aging treatment exhibit lower strength and ductility due to low density of T1precipitates in the grain interior and high density of T1precipitates around subgrain boundaries.
基金Project(11727802)supported by the National Natural Science Foundation of ChinaProjects(2018CDJSK04XK09,106112017CDJQJ328840)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The influence of Al3Zr particles on the hot compression behavior and processing map(PM)of Al-Cu-Li based alloys under isothermal plane-strain compression in the temperature range of 400-500℃and at the strain rates of 0.01-10 s^-1 was investigated.The corresponding microstructure was analyzed using optical microscopy(OM),electron back-scattered diffraction(EBSD)and transmission electron microscope(TEM).The results showed that dynamic recovery(DRV)played a greater role than dynamic recrystallization(DRX)in dynamic softening.At low temperatures,the Al3Zr particles were the significant barriers to inhibit DRV and DRX grain growth.When the temperature reached 500℃,the Al3Zr particles readily spread along grain boundaries just like a necklace due to the dissolution of Al3Zr particles and rapid diffusion of Zr through grain boundary,resulting in generating the macroscopic cracks and forming an instability domain at 490-500℃,0.01 s^-1 in the PM.
基金supported by the Natural Science Foundation of Guangdong Province,No.2016A030313180(to FCJ)
文摘Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013.