期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Conceptual design report of the Super Tau-Charm Facility:the accelerator
1
作者 Xiao-Cong Ai liu-Pan An +451 位作者 Shi-Zhong An Yu Bai Zheng-He Bai Olga Bakina Jian-Cong Bao Varvara Batozskaya Anastasios Belias Maria Enrica Biagini Li-Gong Bian Denis Bodrov Anton Bogomyagkov Manuela Boscolo Igor Boyko Ze-Xin Cao Serkant Cetin Marina Chadeeva Ming-Xuan Chang Qin Chang Dian-Yong Chen Fang-Zhou Chen Hai Chen Hua-Xing Chen Jin-Hui Chen Long Chen Long-Bin Chen Qi Chen Qu-Shan Chen Shao-Min Chen Wei Chen Ying Chen Zhi Chen Shan Cheng Si-Bo Cheng Tong-Guang Cheng Lian-Rong Dai Ling-Yun Dai Xin-Chen Dai Achim Denig Igor Denisenko Denis Derkach Heng-Tong Ding Ming-Hui Ding Xiao Ding Liao-Yuan Dong Yong Du Prokhor Egorov Kuan-Jun Fan Si-Yuan Fan Shuang-Shi Fang Zhu-Jun Fang Song Feng Xu Feng Hai-Bing Fu Jun Gao Yuan-Ning Gao Zi-Han Gao Cong Geng Li-Sheng Geng Hai-Liang Gong Jia-Ding Gong Li Gong Shao-Kun Gong Sergi Gonzàlez-Solís Bo-Xing Gou Duan Gu Hao Guo Jun Guo Teng-Jun Guo Xin-Heng Guo Yu-Hui Guo Yu-Ping Guo Zhi-Hui Guo Selcuk Haciomeroglu Eiad Hamwi Cheng-Dong Han Ting-Ting Han Xi-Qing Hao Chong-Chao He Ji-Bo He Tian-Long He Xiao-Gang He Masahito Hosaka Kai-Wen Hou Zhi-Long Hou Dong-Dong Hu Hai-Ming Hu Hao Hu Qi-Peng Hu Tong-Ning Hu Xiao-Cheng Hu Yu Hu Zhen Hu Da-Zhang Huang Fei Huang Guang-Shun Huang Liang-Sheng Huang Peng-Wei Huang Rui-Xuan Huang Xing-Tao Huang Xue-Lei Huang Zhi-Cheng Huang Wang Ji Peng-Kun Jia Sen Jia Ze-Kun Jia Hong-Ping Jiang Hou-Bing Jiang Jian-Bin Jiao Ming-Jie Jin Su-Ping Jin Yi Jin Daekyoung Kang Xian-Wei Kang Xiao-Lin Kang Leonid Kaptari Onur Bugra Kolcu Ivan Koop Evgeniy Kravchenko Yury Kudenko Meike Küßner Yong-Bin Leng Eugene Levichev Chao Li Chun-Yuan Li Chun-Hua Li Hai Tao Li Hai-Bo Li Hang-Zhou Li Heng-Ne Li Hong-Lei Li Hui-Jing Li Hui-Lin Li Jia-Rong Li Jin Li Lei Li Min Li Pei-Rong Li Pei-Lian Li Ren-Kai Li Sang-Ya Li Shu Li Teng Li Tian-You Li Wei-Wei Li Wen-Jun Li Xin Li Xin-Qiang Li Xin-Bai Li Xuan Li Xun-Feng Li Yan-Feng Li Ya-Xuan Li Ying Li Yu-Bo Li Jian Liang Xiao Liang Yu Liang Ze-Rui Liang Chuang-Xin Lin De-Xu Lin Ting Lin Yu-Gen Lin Chao liu Chao liu Chia-Wei liu Gang-Wen liu Hang liu Hong-Bang liu Jian-Bei liu Jian-Dang liu Lang-Tian liu Liang-Chen liu Ming-Yi liu Shu-Bin liu Tao liu Tian-Bo liu Xiang liu Xiao-Yu liu Xin liu Xu-Yang liu yan-rui liu Yan-Lin liu Yan-Wen liu Yi liu Yuan liu Zhan-Wei liu Zhao-Feng liu Zhi-Qing liu Zi-Rui liu Zuo-Wei liu Cai-Dian Lu Miao-Ran Lu Peng-Cheng Lu Yu Lu Qing Luo Tao Luo Tao Luo Xiao-Feng Luo Hui-Hui Lv Shuo-Tian Lyu Xiao-Rui Lyu Bo-Qiang Ma Cheng-Long Ma Shao-Hang Ma Teng Ma Wen-Bin Ma Yu Meng Meng-Xu Fan Xue-Ce Miao Mauro Migliorati Catia Milardi Taisiya Mineeva Yi-Hao Mo Hector Gisbert Mullor Elaf Musa Satoshi Nakamura Alexey Nefediev Yuan-Cun Nie Kazuhito Ohmi MPadmanath Pavel Pakhlov Jian Pang Emilie Passemar Guo-Xi Pei Hua Pei Hai-Ping Peng Liang Peng Rong-Gang Ping Bernard Pire Vindhyawasini Prasad Bin-Bin Qi Zhi-Jun Qi Yi Qian Cong-Feng Qiao Jia-Jia Qin Long-Yu Qin Qin Qin Xiao-Shuai Qin Fedor Ratnikov Craig Roberts Antonio Rodríguez-Sánchez Yury Rogovsky Platon Rogozhin Pablo Roig Man-Qi Ruan Jorge Segovia Feng-Lei Shang Lei Shang Jian-Feng Shangguan Ding-Yu Shao Ming Shao Zhuo-Xia Shao Cheng-Ping Shen Hong-Fei Shen Xiao-Min Shen Zhong-Tao Shen Cai-Tu Shi Jia-Lei Shi Rui-Xiang Shi Yu-Kun Shi Zong-Guo Si Luiz Vale Silva Mikhail Skamarokha Jun-Chao Su Guang-Bao Sun Jun-Feng Sun Kun Sun Li Sun Ming-Kai Sun Rui Sun Xu-Lei Sun Jing-Yu Tang Yin-Gao Tang Ze-Bo Tang Wei Tao Valery Telnov Jia-Xiu Teng Yuriy Tikhonov Cheng-Ying Tsai Timofey Uglov Vincenzo Vagnoni German Valencia Guan-Yue Wan An-Xin Wang Bin Wang Cheng-Zhe Wang En Wang Hong-Jin Wang Jia Wang Jie Wang Jun-Zhang Wang Lei Wang Lei Wang Lin Wang Qian Wang Qian Wang Sheng-Quan Wang Sheng-Yuan Wang Shi-Kang Wang Wei Wang Wei-Ping Wang Xiang-Peng Wang Xia-Yu Wang Xiong-Fei Wang Ya-Qian Wang Yu-Ming Wang Yu-Hao Wang Zeren Simon Wang Zhi Wang Zhi-Gang Wang Zhi-Yong Wang Zi-Yu Wang Zi-Rui Wang Bing-Feng Wei Shao-Qing Wei Shu-Yi Wei Xiao-Min Wei Ya-Jing Wei Ye-Long Wei Ulrich Wiedner Jia-Jun Wu Jun Wu Qun Wu Sang Wu Xin Wu Xing-Gang Wu Xuan Wu Yong-Cheng Wu Yu-Sheng Wu Lei Xia Zhi-Gang Xiao Chun-Jie Xie Kai-Bo Xie Zi-Yu Xiong Ji Xu Lai-Lin Xu Shu-Sheng Xu Xin Xu Yue Xu Liang Yan Wen-Biao Yan Xue-Qing Yan Chi Yang Hai-Jun Yang Hong-Tao Yang Jun Yang Peng-Hui Yang Shuai Yang Tao Yang Wei-Hua Yang Xing-Hua Yang Xue-Ting Yang Yue-Ling Yang Zhen-Wei Yang Zhong-Juan Yang De-Liang Yao Zao-Chen Ye Kai Yi Li Yi Li-Xin Yin Zheng-Yun You Chen Yu Ze Yu Jing Yuan You-Jin Yuan Nefedov Yury Yi-Feng Zeng Wang-Mei Zha Ai-Lin Zhang Ding-Yue Zhang Guang-Yi Zhang Guo-Heng Zhang Hai-Yan Zhang Hao-Ran Zhang Hong-Hao Zhang Hui-Bin Zhang Jia-Lian Zhang Jian-Rong Zhang Jian-Hui Zhang Jian-Yu Zhang Jie-Lei Zhang Lei Zhang Liang Zhang Ling-Hua Zhang Lin-Hao Zhang Ning Zhang Qiu-Yan Zhang Quan-Zheng Zhang Rui Zhang Rui-Yang Zhang Shao-Ru Zhang Sheng-Hui Zhang Shu-Lei Zhang Wen-Chao Zhang Xiao-Yang Zhang Xiao-Ming Zhang Xiao-Tao Zhang Xin Zhang Xin-Hui Zhang Yan-Xi Zhang Ya-Teng Zhang Yi-Hao Zhang Yi-Fei Zhang Yu Zhang Yu Zhang Yu-Mei Zhang Zhen-Yu Zhang Zhi-Qing Zhang Zhi-Cai Zhang Jia-Yao Zhao Ming-Gang Zhao Qiang Zhao Rui-Guang Zhao Yang-Cheng Zhao Ze-Xuan Zhao Zheng-Guo Zhao Alexey Zhemchugov Bo Zheng Jing-Xin Zheng Liang Zheng Ran Zheng Xu-Chang Zheng Yang-Heng Zheng Bin Zhong Dai-Cui Zhou De-Min Zhou Hang Zhou Hao Zhou Jian Zhou Jian-Xin Zhou Qin-Song Zhou Shi-Yu Zhou Xiang Zhou Xiao-Kang Zhou Xiao-Rong Zhou Ya-Jin Zhou Yi Zhou Yi-Mei Zhou Ze-Ran Zhou Bing Zhu Jing-Yu Zhu Jing-Ya Zhu Lin Zhu Rui-Lin Zhu Xing-Hao Zhu Ying-Chun Zhu Zian Zhu Mikhail Zobov Yang Zong Bing-Song Zou Ye Zou Jian Zu 《Nuclear Science and Techniques》 2025年第12期8-177,共170页
Electron-positron colliders operating in the GeV center-of-mass range,or tau-charm energy region,have been proved to enable competitive frontier research due to several unique features.With the progress of high-energy... Electron-positron colliders operating in the GeV center-of-mass range,or tau-charm energy region,have been proved to enable competitive frontier research due to several unique features.With the progress of high-energy physics in the last two decades,a new-generation Tau-Charm factory,called the Super Tau-Charm Facility(STCF),has been actively promoted by the particle physics community in China.STCF has the potential to address fundamental questions such as the essence of color confinement and the matter-antimatter asymmetry within the next decades.The main design goals of the STCF are a center-of-mass energy ranging from 2 to 7 GeV and a luminosity surpassing 5×10^(34)cm^(−2)s^(−1)that is optimized at a center-of-mass energy of 4 GeV,which is approximately 50 times that of the currently operating Tau-Charm factory-BEPCII.The STCF accelerator has two main parts:a double-ring collider with a crab-waist collision scheme and an injector that provides top-up injections for both electron and positron beams.As a typical third-generation electron-positron circular collider,the STCF accelerator faces many challenges in both accelerator physics and technology.In this paper,the conceptual design of the STCF accelerator complex is presented,including the ongoing efforts and plans for technological research and develop-ment,as well as the required infrastructure.The STCF project aims to secure support from the Chinese central government for its construction during the 15th Five-Year Plan(2026-2030). 展开更多
关键词 Third-generation electron-positron collider Super high-luminosity Tau-charm physics Crab-waist collision scheme Touschek lifetime
在线阅读 下载PDF
Hidden-charm Pentaquark Production at e^(+)e^(-) Colliders
2
作者 Shi-Yuan Li yan-rui liu +2 位作者 Yu-Nan liu Zong-Guo Si Xiao-Feng Zhang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2018年第3期291-296,共6页
We study one possible production mechanism for the hidden-charm pentaquark via a color-octet cc pair fragmentation in e^(+)e^(-)collision.The pentaquark production at B factory energy is dominated by e^(+)e^(-)→ccg→... We study one possible production mechanism for the hidden-charm pentaquark via a color-octet cc pair fragmentation in e^(+)e^(-)collision.The pentaquark production at B factory energy is dominated by e^(+)e^(-)→ccg→P_(c)+X,while at Z^(0)pole energy,there are several partonic processes playing significant role.Our results show that it is possible to search for the direct pentaquark production signal at e^(+)e^(-)colliders,which is important to understand the properties of pentaquark. 展开更多
关键词 PENTAQUARK e^(+)e^(-)annihialation NRQCD
原文传递
高能散射强相互作用唯象学研究进展 被引量:2
3
作者 王健 司宗国 +5 位作者 刘言锐 李世渊 吴群 金毅 姚涛 蒋军 《科学通报》 EI CAS CSCD 北大核心 2021年第16期1957-1967,共11页
高能散射是研究物质基本结构及其相互作用规律的基本实验手段,探索新物理必然涉及的强相互作用唯象分析和精确计算尤为重要.本文围绕强子产生介绍高能散射强相互作用的最新唯象学研究进展,主要包括量子色动力学微扰计算概述、强相互作... 高能散射是研究物质基本结构及其相互作用规律的基本实验手段,探索新物理必然涉及的强相互作用唯象分析和精确计算尤为重要.本文围绕强子产生介绍高能散射强相互作用的最新唯象学研究进展,主要包括量子色动力学微扰计算概述、强相互作用软硬界面的预禁闭结构(色连接、重子数涨落等)、色单态预禁闭集团的强子化物理图像及重要的强子化模型(弦碎裂模型、集团碎裂模型、夸克组合模型等)、强子产生涉及的相关强子结构和强子波函数的研究与应用等. 展开更多
关键词 多重产生 微扰量子色动力学 预禁闭 强子化 强子波函数
原文传递
Exotic hadron bound state production at hadron colliders 被引量:1
4
作者 Yi Jin Shi-Yuan Li +3 位作者 yan-rui liu Lu Meng Zong-Guo Si Xiao-Feng Zhang 《Chinese Physics C》 SCIE CAS CSCD 2017年第8期53-63,共11页
The non-relativistic wave function framework is applied to study the production and decay of exotic hadrons, which can be effectively described as bound states of other hadrons. Employing the factorized formulation,wi... The non-relativistic wave function framework is applied to study the production and decay of exotic hadrons, which can be effectively described as bound states of other hadrons. Employing the factorized formulation,with the help of event generators, we investigate the production of exotic hadrons in multiproduction processes at high energy hadron colliders. This study provides crucial information for the measurements of the relevant exotic hadrons. 展开更多
关键词 bound states of hadrons wave function multiproduction
原文传递
Double-heavy tetraquark states with heavy diquark-antiquark symmetry
5
作者 Jian-Bo Cheng Shi-Yuan Li +2 位作者 yan-rui liu Zong-Guo Si Tao Yao 《Chinese Physics C》 SCIE CAS CSCD 2021年第4期70-86,共17页
We calculate the masses of the QQqq(Q=c,b:q=u,d,s)tetraquark states with the aid of heavy diquark-antiquark symmetry(HDAS)and the chromomagnetic interaction(CMI)model.The masses of the highestspin(J=2)tetraquarks that... We calculate the masses of the QQqq(Q=c,b:q=u,d,s)tetraquark states with the aid of heavy diquark-antiquark symmetry(HDAS)and the chromomagnetic interaction(CMI)model.The masses of the highestspin(J=2)tetraquarks that have only the(QQ)(3):(qq)_(3).color structure are related with those of conventional hadrons using HDAS.Thereafter,the masses of their partner states are determined with the mass splittings in the CMI model.Our numerical results reveal that(i)the lightest ccnn(n=u,d)is an I(J^(P))=0(1^(+))state around 3929 MeV(53 MeV above the DD^(*) threshold),and none of the double-charm tetraquarks are stable;(ii)the stable double-bottom tetraquarks are the lowest 0(1^(+))bbin around 10488 MeV(≈116 MeV below the BB^(*)threshold)and the lowest 1/2(1^(+))bbns around 10671 MeV(≈20 MeV below the BB_(s)^(*)/B_(s)B^(*)threshold);and(iii)the two lowest bcnn tetraquarks,namely the lowest 0(0^(+))around 7167 MeV and the lowest 0(1)around 7223 MeV,are in the nearthreshold states.Moreover,we discuss the constraints on the masses of double-heavy hadrons.Specifically,for the lowest nonstrange tetraquarks,we obtain T_(cc)<3965 MeV,T_(bb)<10627 MeV,and T_(bc)<7199 MeV. 展开更多
关键词 heavy diquark-antiquark symmetry(HDAS) chromomagnetic interaction(CMI)model double-heavy TETRAQUARK mass spectrum
原文传递
X(3960),X0(4140),and other compact cs■states
6
作者 李世渊 刘言锐 +2 位作者 满自龙 司宗国 武敬 《Chinese Physics C》 SCIE CAS CSCD 2024年第6期92-101,共10页
We studied the spectrum and rearrangement decays of S-wave cs■tetraquark states in a simplified quark model.The masses and widths were estimated by assuming that X(4140)is the lower 1^(++)cs■tetraquark.Comparing our... We studied the spectrum and rearrangement decays of S-wave cs■tetraquark states in a simplified quark model.The masses and widths were estimated by assuming that X(4140)is the lower 1^(++)cs■tetraquark.Comparing our results with experimental measurements,we found that X(3960),recently observed by LHCb,can be considered the lowest 0^(++)sc■tetraquark state and X0(4140)could be the second lowest 0^(++)cs■tetraquark.Predictions of ratios between partial widths for the involved tetraquarks are provided in this paper.We aim to identify more cs■tetraquarks with J^(PC)=1^(+-),0^(++),and 2^(++). 展开更多
关键词 TETRAQUARK mass spectrum rearrangement decay mass splittings
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部