Laser interferometry with higher resolution,faster update rate,and larger dynamic range is highly anticipated in the exploration of physics frontiers,advanced manufacturing,and precision sensing.Real-time dispersive s...Laser interferometry with higher resolution,faster update rate,and larger dynamic range is highly anticipated in the exploration of physics frontiers,advanced manufacturing,and precision sensing.Real-time dispersive spectral interferometry(DSI)shows promise for high-speed precision measurements,whereas the resolution of subnanometers has not yet been achieved.We present a comprehensive theoretical framework to analyze the limitations of real-time DSI based on the signal-to-noise ratio and data volume.A real-time orthogonal polarization spectral interferometry technique is proposed,which utilizes a pair of interferograms with the pi-phase shift to effectively mitigate the phase noise embedded in real-time spectral envelopes,thereby enabling the precise measurements with subnanometer resolution at megahertz frame rates.The recorded time series data are processed through interpolation,segmentation,time–frequency mapping,and de-enveloping to regain the typical cosine-shaped spectral evolution,followed by a fitting-based phase retrieval method to extract the interference phase.The phase resolution of 1.1 mrad(0.91 as for time delay and 0.3 nm for distance)is obtained at the update rate of 22.2 MHz even under the detection bandwidth of 500 MHz,and can be further enhanced to 0.29 mrad(0.24 as for time delay)after 500 times averaging(∼0.5 MHz).Our approach is validated through periodic phase modulations and applied to measure the rapid damped oscillations of a piezo stage,yielding results consistent with those obtained from a commercial picometer interferometer.展开更多
Mode-locked fiber lasers are excellent platforms for soliton generation.Solitons exhibit distinct distribution and evolution characteristics depending on the net dispersion of the laser cavity.Here we propose an exper...Mode-locked fiber lasers are excellent platforms for soliton generation.Solitons exhibit distinct distribution and evolution characteristics depending on the net dispersion of the laser cavity.Here we propose an experimental scheme to reconstruct the intracavity dynamics of solitons within a mode-locked fiber laser.The proposed scheme is facilitated by disposing multiple output ports at different positions throughout the cavity,thereby enabling indepth observation and manipulation of soliton evolution along the dispersion map.The experimental results verify corresponding simulations and explain some phenomena from the perspective of soliton evolution.Our results offer a pathway for comprehensive analyses of intracavity pulse dynamics,fostering advancements in nonlinear and ultrafast optics.展开更多
The utilization of the dispersive Fourier transformation approach has enabled comprehensive observation of the birth process of dissipative solitons in fiber lasers.However,there is still a dearth of deep understandin...The utilization of the dispersive Fourier transformation approach has enabled comprehensive observation of the birth process of dissipative solitons in fiber lasers.However,there is still a dearth of deep understanding regarding the extinction process of dissipative solitons.In this study,we have utilized a combination of experimental and numerical techniques to thoroughly examine the breathing dynamics of dissipative solitons during the extinction process in an Er-doped mode-locked fiber laser.The results demonstrate that the transient breathing dynamics have a substantial impact on the extinction stage of both steady-state and breathing-state dissipative solitons.The duration of transient breathing exhibits a high degree of sensitivity to variations in pump power.Numerical simulations are utilized to produce analogous breathing dynamics within the framework of a model that integrates equations characterizing the population inversion in a mode-locked laser.These results corroborate the role of Q-switching instability in the onset of breathing oscillations.Furthermore,these findings offer new possibilities for the advancement of various operational frameworks for ultrafast lasers.展开更多
The dispersive Fourier transform(DFT) technique opens a fascinating pathway to explore ultrafast non-repetitive events and has been employed to study the build-up process of mode-locked lasers. However, the shutting p...The dispersive Fourier transform(DFT) technique opens a fascinating pathway to explore ultrafast non-repetitive events and has been employed to study the build-up process of mode-locked lasers. However, the shutting process for the mode-locked fiber laser seems to be beyond the scope of researchers, and the starting dynamics under nearzero dispersion remains unclear. Here, the complete evolution dynamics(from birth to extinction) of the conventional soliton(CS), stretched pulse(SP), and dissipative soliton(DS) are investigated by using the DFT technique.CS, SP, and DS fiber lasers mode locked by single-walled carbon nanotubes(SWNTs) are implemented via engineering the intracavity dispersion map. The relaxation oscillation can always be observed before the formation of stable pulse operation due to the inherent advantage of SWNT, but it exhibits distinct evolution dynamics in the starting and shutting processes. The shutting processes are dependent on the dispersion condition and turn-off time, which is against common sense. Some critical phenomena are also observed, including transient complex spectrum broadening and frequency-shift interaction of SPs and picosecond pulses. These results will further deepen understanding of the mode-locked fiber laser from a real-time point of view and are helpful for laser design and applications.展开更多
Real-time spectroscopy based on an emerging time-stretch technique can map the spectral information of optical waves into the time domain,opening several fascinating explorations of nonlinear dynamics in mode-locked l...Real-time spectroscopy based on an emerging time-stretch technique can map the spectral information of optical waves into the time domain,opening several fascinating explorations of nonlinear dynamics in mode-locked lasers.However,the self-starting process of mode-locked lasers is quite sensitive to environmental perturbation,which causes the transient behaviors of lasers to deviate from the true buildup process of solitons.We optimize the laser system to improve its stability,which suppresses the Q-switched lasing induced by environmental perturbation.We,therefore,demonstrate the first observation of the entire buildup process of solitons in a mode-locked laser,revealing two possible pathways to generate the temporal solitons.One pathway includes the dynamics of raised relaxation oscillation,quasimode-locking stage,spectral beating behavior,and finally the stable single-soliton mode-locking.The other pathway contains,however,an extra transient bound-state stage before the final single-pulse modelocking operation.Moreover,we propose a theoretical model to predict the buildup time of solitons,which agrees well with the experimental results.Our findings can bring real-time insights into ultrafast fiber laser design and optimization,as well as promote the application of fiber laser.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61705193)the Natural Science Foundation of Zhejiang Province(Grant No.LGG20F050002)the Jinhua Science and Technology Plan(Project No.2024-1-064).
文摘Laser interferometry with higher resolution,faster update rate,and larger dynamic range is highly anticipated in the exploration of physics frontiers,advanced manufacturing,and precision sensing.Real-time dispersive spectral interferometry(DSI)shows promise for high-speed precision measurements,whereas the resolution of subnanometers has not yet been achieved.We present a comprehensive theoretical framework to analyze the limitations of real-time DSI based on the signal-to-noise ratio and data volume.A real-time orthogonal polarization spectral interferometry technique is proposed,which utilizes a pair of interferograms with the pi-phase shift to effectively mitigate the phase noise embedded in real-time spectral envelopes,thereby enabling the precise measurements with subnanometer resolution at megahertz frame rates.The recorded time series data are processed through interpolation,segmentation,time–frequency mapping,and de-enveloping to regain the typical cosine-shaped spectral evolution,followed by a fitting-based phase retrieval method to extract the interference phase.The phase resolution of 1.1 mrad(0.91 as for time delay and 0.3 nm for distance)is obtained at the update rate of 22.2 MHz even under the detection bandwidth of 500 MHz,and can be further enhanced to 0.29 mrad(0.24 as for time delay)after 500 times averaging(∼0.5 MHz).Our approach is validated through periodic phase modulations and applied to measure the rapid damped oscillations of a piezo stage,yielding results consistent with those obtained from a commercial picometer interferometer.
基金National Key Research and Development Program of China(2023YFF0715802)National Natural Science Foundation of China(62305299,62205296 and12475006)+1 种基金Natural Science Foundation of Zhejiang Province(Z24F050008,LQ23F050004,LQ22F050007)Natural Science Basic Research Program of Shaanxi(2023-JC-YB-563)。
文摘Mode-locked fiber lasers are excellent platforms for soliton generation.Solitons exhibit distinct distribution and evolution characteristics depending on the net dispersion of the laser cavity.Here we propose an experimental scheme to reconstruct the intracavity dynamics of solitons within a mode-locked fiber laser.The proposed scheme is facilitated by disposing multiple output ports at different positions throughout the cavity,thereby enabling indepth observation and manipulation of soliton evolution along the dispersion map.The experimental results verify corresponding simulations and explain some phenomena from the perspective of soliton evolution.Our results offer a pathway for comprehensive analyses of intracavity pulse dynamics,fostering advancements in nonlinear and ultrafast optics.
基金supported by the National Natural Science Foundation of China(Grant Nos.62305299 and 62205296)the Zhejiang Provincial Natural Science Foundation of China(Nos.LQ22F050007 and LQ23F050004)+1 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2020WNLOKF008)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2022C03084).
文摘The utilization of the dispersive Fourier transformation approach has enabled comprehensive observation of the birth process of dissipative solitons in fiber lasers.However,there is still a dearth of deep understanding regarding the extinction process of dissipative solitons.In this study,we have utilized a combination of experimental and numerical techniques to thoroughly examine the breathing dynamics of dissipative solitons during the extinction process in an Er-doped mode-locked fiber laser.The results demonstrate that the transient breathing dynamics have a substantial impact on the extinction stage of both steady-state and breathing-state dissipative solitons.The duration of transient breathing exhibits a high degree of sensitivity to variations in pump power.Numerical simulations are utilized to produce analogous breathing dynamics within the framework of a model that integrates equations characterizing the population inversion in a mode-locked laser.These results corroborate the role of Q-switching instability in the onset of breathing oscillations.Furthermore,these findings offer new possibilities for the advancement of various operational frameworks for ultrafast lasers.
基金National Natural Science Foundation of China(NSFC)(11774310,61525505,61705193)China Postdoctoral Science Foundation(2017M610367)
文摘The dispersive Fourier transform(DFT) technique opens a fascinating pathway to explore ultrafast non-repetitive events and has been employed to study the build-up process of mode-locked lasers. However, the shutting process for the mode-locked fiber laser seems to be beyond the scope of researchers, and the starting dynamics under nearzero dispersion remains unclear. Here, the complete evolution dynamics(from birth to extinction) of the conventional soliton(CS), stretched pulse(SP), and dissipative soliton(DS) are investigated by using the DFT technique.CS, SP, and DS fiber lasers mode locked by single-walled carbon nanotubes(SWNTs) are implemented via engineering the intracavity dispersion map. The relaxation oscillation can always be observed before the formation of stable pulse operation due to the inherent advantage of SWNT, but it exhibits distinct evolution dynamics in the starting and shutting processes. The shutting processes are dependent on the dispersion condition and turn-off time, which is against common sense. Some critical phenomena are also observed, including transient complex spectrum broadening and frequency-shift interaction of SPs and picosecond pulses. These results will further deepen understanding of the mode-locked fiber laser from a real-time point of view and are helpful for laser design and applications.
基金We thank X.Yao,X.Han,G.Chen,W.Li,G.Wang,and Y.Zhang for fruitful discussions.The work was supported by the National Natural Science Foundation of China under Grant Nos.61525505,11774310, 61705193by the Key Scientific and Technological Innovation Team Project in Shaanxi Province(2015KCT-06)and by China Postdoctoral Science Foundation(2017M610367).
文摘Real-time spectroscopy based on an emerging time-stretch technique can map the spectral information of optical waves into the time domain,opening several fascinating explorations of nonlinear dynamics in mode-locked lasers.However,the self-starting process of mode-locked lasers is quite sensitive to environmental perturbation,which causes the transient behaviors of lasers to deviate from the true buildup process of solitons.We optimize the laser system to improve its stability,which suppresses the Q-switched lasing induced by environmental perturbation.We,therefore,demonstrate the first observation of the entire buildup process of solitons in a mode-locked laser,revealing two possible pathways to generate the temporal solitons.One pathway includes the dynamics of raised relaxation oscillation,quasimode-locking stage,spectral beating behavior,and finally the stable single-soliton mode-locking.The other pathway contains,however,an extra transient bound-state stage before the final single-pulse modelocking operation.Moreover,we propose a theoretical model to predict the buildup time of solitons,which agrees well with the experimental results.Our findings can bring real-time insights into ultrafast fiber laser design and optimization,as well as promote the application of fiber laser.