Almost all intraplate caprocks experienced strong deformation during the convergence of microplates, and then disintegrated into many secondary geologic units with the special characters, such as irregular boundaries ...Almost all intraplate caprocks experienced strong deformation during the convergence of microplates, and then disintegrated into many secondary geologic units with the special characters, such as irregular boundaries and particular structural assemblages. In order to understand the formation mechanism of these special phenomena, a rheological experiment on the structural scenery of the Tongling area is carried out. The result shows that the primary regular and uniform boundaries of the Tongling area becomes irregular because of the enclosing and confinement of surrounding geological units in the process of 'compression-shearing-rotation-drag'; simultaneously, two specific 'drag depressions' developed at two opposite corners of the block. The former and the later phenomena can be regarded as a typical regional-scale rheological effect and necessary outcome of intraplate deformation respectively.展开更多
Based on the data of field measurement and drilling in the Tongling area, a series of numerical simulations are carried out by using the 'Surplus Space Method' (SSM), which is first put forward in this paper a...Based on the data of field measurement and drilling in the Tongling area, a series of numerical simulations are carried out by using the 'Surplus Space Method' (SSM), which is first put forward in this paper and applied to predict the shallow-seated magmatic bodies. The results of the numerical simulations show the existence and the 3-D shape of a conical magmatic structure at a depth of-1000 m beneath the center of the area: its top offsets southwards and bifurcates to several branches, while its lower part stretches northeastwards and contracts rapidly to a point at about -1000 m depth. This point is reckoned to be a 'sink' of magma system, transferring ore materials and heat energy from the deep magma chamber to the sub-surface apophyses. The preliminary application of the SSM proves that it may be developed as a new detection means for determining the existence of shallow-seated magmatic bodies and analyzing their three-dimensional features.展开更多
文摘Almost all intraplate caprocks experienced strong deformation during the convergence of microplates, and then disintegrated into many secondary geologic units with the special characters, such as irregular boundaries and particular structural assemblages. In order to understand the formation mechanism of these special phenomena, a rheological experiment on the structural scenery of the Tongling area is carried out. The result shows that the primary regular and uniform boundaries of the Tongling area becomes irregular because of the enclosing and confinement of surrounding geological units in the process of 'compression-shearing-rotation-drag'; simultaneously, two specific 'drag depressions' developed at two opposite corners of the block. The former and the later phenomena can be regarded as a typical regional-scale rheological effect and necessary outcome of intraplate deformation respectively.
基金This study was financially supported by the National Important Basic Research and Development Planning Program(No.1999043206)the National Natural Science Foundation of China(No.40234051)+1 种基金the Special Plan of Science and Technology of the Ministry of Land and Resources(20010103)the"Trans-century Training Program for Outstanding Talents”Fund sponsored by the.Ministry of Education.
文摘Based on the data of field measurement and drilling in the Tongling area, a series of numerical simulations are carried out by using the 'Surplus Space Method' (SSM), which is first put forward in this paper and applied to predict the shallow-seated magmatic bodies. The results of the numerical simulations show the existence and the 3-D shape of a conical magmatic structure at a depth of-1000 m beneath the center of the area: its top offsets southwards and bifurcates to several branches, while its lower part stretches northeastwards and contracts rapidly to a point at about -1000 m depth. This point is reckoned to be a 'sink' of magma system, transferring ore materials and heat energy from the deep magma chamber to the sub-surface apophyses. The preliminary application of the SSM proves that it may be developed as a new detection means for determining the existence of shallow-seated magmatic bodies and analyzing their three-dimensional features.