户内变电站作为电网的重要组成部分,能耗高、散热差的问题受到了广泛关注。针对该问题提出了一种基于天空辐射制冷的储冷送风降温系统,对户内变电站进行冷却降温;搭建了该系统实验测试平台,对其储冷及降温性能进行测试;根据实测数据对...户内变电站作为电网的重要组成部分,能耗高、散热差的问题受到了广泛关注。针对该问题提出了一种基于天空辐射制冷的储冷送风降温系统,对户内变电站进行冷却降温;搭建了该系统实验测试平台,对其储冷及降温性能进行测试;根据实测数据对建立的系统传热模型进行了验证。结果表明:该降温系统在夏季和秋季夜间均有良好的蓄冷性能,蓄冷水箱温度降幅分别达6.5℃和9.0℃,秋季日间用冷户内变电站模块室内平均温度稳定在18.0℃,而不采用该降温系统的室内温度为40.0℃,系统平均性能系数(coefficient of performance,COP)为8.38,系统降温节能效果显著;天空辐射制冷模块出口水温和总制冷量的实测值与模拟值的相对误差均小于5%,建立的系统传热模型可靠性好。该研究为户内变电站低能耗降温提供了一种节能方案,并为该方案的设计运行提供了理论基础。展开更多
Bacterial infection presents formidable challenges that frequently culminate in the malfunction of metal implants.Traditional surface treatment methods struggle to effectively achieve controllable management of bacter...Bacterial infection presents formidable challenges that frequently culminate in the malfunction of metal implants.Traditional surface treatment methods struggle to effectively achieve controllable management of bacterial infections associated with metal implants.To effectively enhance the antibacterial capabilities and preventing bacterial adhesion,electroactive materials have emerged as a groundbreaking strategy for surface modification of metal.By responding to external signals,the electroactive materials can improve antibacterial properties and resistance to bacterial adhesion on the implant surface through harnessing the electrostatic interaction of charges,ion release,oxidation of reactive oxygen species(ROS),electron transfer,and the involvement of cellular immunity.This review delves into the principles of how electroactive materials confer implants with antibacterial properties and antibacterial adhesion,while also summarizing the latest research breakthroughs in their application for surface modification.These strategies successfully strike a balance between the antibacterial and the antimicrobial performance of the implant surface.Lastly,the review examines the limitations and ongoing challenges faced by electroactive material modification technology in implant applications,and sketches out the future trajectory and potential innovative avenues in this promising field.展开更多
[Objectives] To study the effects of Tiaomaiyin and its disassembled prescription on expression of L-type calcium channel β2 subunit in rat model of tachyarrhythmia. [Methods] Sixty Wistar rats were randomly divided ...[Objectives] To study the effects of Tiaomaiyin and its disassembled prescription on expression of L-type calcium channel β2 subunit in rat model of tachyarrhythmia. [Methods] Sixty Wistar rats were randomly divided into model group,Tiaomaiyin prescription group( whole prescription group),main efficacy group of removing heat to cool blood( blood cooling group),and auxiliary drug efficacy group of benefiting qi and nourishing heart( qi benefiting group),auxiliary efficacy group of promoting flow of qi and blood circulation( qi flow promoting group),and amiodarone group( western medicine group). Aconitine was given 7 d after the intragastric administration of the corresponding drugs,and the time of occurrence of arrhythmia in each group was observed. The left ventricular myocardium was subjected to reverse transcription-polymerase chain reaction and Western blotting. [Results] The ventricular premature beats( VPB) time in the whole prescription group and western medicine group was significantly longer than that in the model group. Ventricular tachycardia( VT),ventricular fibrillation( VF),and cardiac arrest( CA) were longer in the whole prescription group,blood cooling group,and western medicine group. The mRNA and protein expression of L-type calcium channel β2 subunit in the whole prescription group,blood cooling group and western medicine group were significantly decreased. [Conclusions] Tiaomaiyin whole prescription group and blood cooling group can reduce the occurrence time of tachyarrhythmia and reduce the expression of LTCC β2 in myocardium.展开更多
MicroRNAs(miRNAs)have been demonstrated to control chicken skeletal muscle growth,however,the potential function of the miR-181-5p family in chicken myogenesis remains largely unknown.Here,our study identified the two...MicroRNAs(miRNAs)have been demonstrated to control chicken skeletal muscle growth,however,the potential function of the miR-181-5p family in chicken myogenesis remains largely unknown.Here,our study identified the two chicken(Gallus gallus;Gga)miR-181-5p family members widely expressed in various tissues,specifically miR-181a-5p and miR-181b-5p.Besides,the breast muscles of fast-growing broilers expressed higher levels of miR-181a-5p and miR-181b-5p than those of slow-growing layers.Functionally,miR-181a-5p and miR-181b-5p both promote the expression level of myogenic factors including myogenin(MyoG),myogenic differentiation 1(MyoD1),and myosin heavy chain(MyHC),meanwhile accelerating the myotube formation of skeletal muscle satellite cells(SMSCs).Mechanistically,miR-181a-5p and miR-181b-5p directly bind to the 3′untranslated region(UTR)of the transforming growth factor beta receptor 1(TGFBR1)mRNA,further reducing the expression of TGFBR1.TGFBR1 is a key Transforming growth factor beta(TGF-β)signaling transduction receptor and had a negative function in muscle cell differentiation.Furthermore,knockdown of TGFBR1 facilitated the expression of chicken myogenic factors,boosted myotube formation,and decreased the SMAD family member 2/3(SMAD2/3)phosphorylation in chicken SMSCs.SMAD2/3 are downstream of TGF-βsignaling,and miR-181a-5p and miR-181b-5p could reduce the expression of TGFBR1 to further diminish the SMAD2/3 phosphorylation.Our findings revealed that the miR-181-5p family targets TGFBR1 to break the TGF-βsignaling transduction,which resulted in promoting chicken skeletal muscle development.展开更多
文摘户内变电站作为电网的重要组成部分,能耗高、散热差的问题受到了广泛关注。针对该问题提出了一种基于天空辐射制冷的储冷送风降温系统,对户内变电站进行冷却降温;搭建了该系统实验测试平台,对其储冷及降温性能进行测试;根据实测数据对建立的系统传热模型进行了验证。结果表明:该降温系统在夏季和秋季夜间均有良好的蓄冷性能,蓄冷水箱温度降幅分别达6.5℃和9.0℃,秋季日间用冷户内变电站模块室内平均温度稳定在18.0℃,而不采用该降温系统的室内温度为40.0℃,系统平均性能系数(coefficient of performance,COP)为8.38,系统降温节能效果显著;天空辐射制冷模块出口水温和总制冷量的实测值与模拟值的相对误差均小于5%,建立的系统传热模型可靠性好。该研究为户内变电站低能耗降温提供了一种节能方案,并为该方案的设计运行提供了理论基础。
基金financially supported by the National Key Research and Development Program of China(Nos.2022YFC2406000 and 2021YFC2400402)the National Natural Science Foundation of China(Nos.52101285,51932002,U21A2055 and U22A20160)
文摘Bacterial infection presents formidable challenges that frequently culminate in the malfunction of metal implants.Traditional surface treatment methods struggle to effectively achieve controllable management of bacterial infections associated with metal implants.To effectively enhance the antibacterial capabilities and preventing bacterial adhesion,electroactive materials have emerged as a groundbreaking strategy for surface modification of metal.By responding to external signals,the electroactive materials can improve antibacterial properties and resistance to bacterial adhesion on the implant surface through harnessing the electrostatic interaction of charges,ion release,oxidation of reactive oxygen species(ROS),electron transfer,and the involvement of cellular immunity.This review delves into the principles of how electroactive materials confer implants with antibacterial properties and antibacterial adhesion,while also summarizing the latest research breakthroughs in their application for surface modification.These strategies successfully strike a balance between the antibacterial and the antimicrobial performance of the implant surface.Lastly,the review examines the limitations and ongoing challenges faced by electroactive material modification technology in implant applications,and sketches out the future trajectory and potential innovative avenues in this promising field.
基金Supported by the Project of Beijing Municipal Natural Science Foundation(7173261)
文摘[Objectives] To study the effects of Tiaomaiyin and its disassembled prescription on expression of L-type calcium channel β2 subunit in rat model of tachyarrhythmia. [Methods] Sixty Wistar rats were randomly divided into model group,Tiaomaiyin prescription group( whole prescription group),main efficacy group of removing heat to cool blood( blood cooling group),and auxiliary drug efficacy group of benefiting qi and nourishing heart( qi benefiting group),auxiliary efficacy group of promoting flow of qi and blood circulation( qi flow promoting group),and amiodarone group( western medicine group). Aconitine was given 7 d after the intragastric administration of the corresponding drugs,and the time of occurrence of arrhythmia in each group was observed. The left ventricular myocardium was subjected to reverse transcription-polymerase chain reaction and Western blotting. [Results] The ventricular premature beats( VPB) time in the whole prescription group and western medicine group was significantly longer than that in the model group. Ventricular tachycardia( VT),ventricular fibrillation( VF),and cardiac arrest( CA) were longer in the whole prescription group,blood cooling group,and western medicine group. The mRNA and protein expression of L-type calcium channel β2 subunit in the whole prescription group,blood cooling group and western medicine group were significantly decreased. [Conclusions] Tiaomaiyin whole prescription group and blood cooling group can reduce the occurrence time of tachyarrhythmia and reduce the expression of LTCC β2 in myocardium.
基金supported by the National Key Research and Development Program of China(2022YFF10002020)Sichuan Science and Technology Program,China(2021YFYZ0007 and 2021YFYZ0031).
文摘MicroRNAs(miRNAs)have been demonstrated to control chicken skeletal muscle growth,however,the potential function of the miR-181-5p family in chicken myogenesis remains largely unknown.Here,our study identified the two chicken(Gallus gallus;Gga)miR-181-5p family members widely expressed in various tissues,specifically miR-181a-5p and miR-181b-5p.Besides,the breast muscles of fast-growing broilers expressed higher levels of miR-181a-5p and miR-181b-5p than those of slow-growing layers.Functionally,miR-181a-5p and miR-181b-5p both promote the expression level of myogenic factors including myogenin(MyoG),myogenic differentiation 1(MyoD1),and myosin heavy chain(MyHC),meanwhile accelerating the myotube formation of skeletal muscle satellite cells(SMSCs).Mechanistically,miR-181a-5p and miR-181b-5p directly bind to the 3′untranslated region(UTR)of the transforming growth factor beta receptor 1(TGFBR1)mRNA,further reducing the expression of TGFBR1.TGFBR1 is a key Transforming growth factor beta(TGF-β)signaling transduction receptor and had a negative function in muscle cell differentiation.Furthermore,knockdown of TGFBR1 facilitated the expression of chicken myogenic factors,boosted myotube formation,and decreased the SMAD family member 2/3(SMAD2/3)phosphorylation in chicken SMSCs.SMAD2/3 are downstream of TGF-βsignaling,and miR-181a-5p and miR-181b-5p could reduce the expression of TGFBR1 to further diminish the SMAD2/3 phosphorylation.Our findings revealed that the miR-181-5p family targets TGFBR1 to break the TGF-βsignaling transduction,which resulted in promoting chicken skeletal muscle development.