In this second part of the paper,bearing the same title as above,but with the last hyphenated phrase replaced by part 1(Theory),the exponential stability and instability(ESI)Theorems 1–4 of part 1 are illustrated by ...In this second part of the paper,bearing the same title as above,but with the last hyphenated phrase replaced by part 1(Theory),the exponential stability and instability(ESI)Theorems 1–4 of part 1 are illustrated by applying them to second-andby,say,third-order linear switched systems with different eigenvalue structures to demonstrate the versatility,novelty and superiority(over many of the results found in the literature,especially for second-order switched lined systems)of the new theoretical results.The computational procedure that is employed with reference to the third-order systems is generic,in the sense that it is applicable to higher(i.e.,greater than third-)order linear switched systems.A pseudo-code for a computer implementation of the stability/instability conditions is also presented.With the principal aim of facilitating an independent reading of this part 2 of the paper,some crucial mathematical notations,definitions and results of part 1 have been repeated,thereby making the contents as self-contained as possible.展开更多
Differential inequalities generated in an extended Lyapunov framework are employed in the stability and instability analyses of a class of switched continuous-time second-and higher order linear systems with an arbitr...Differential inequalities generated in an extended Lyapunov framework are employed in the stability and instability analyses of a class of switched continuous-time second-and higher order linear systems with an arbitrary number of switching matrices.The exponential stability and instability(ESI)conditions so obtained involve the supremum and infimum of ratios of certain quadratic forms of the matrices,leading to global time-averages of their activity intervals.Further,motivated by linear switching system examples of(i)instability with stable matrices and(ii)stability with unstable matrices(found in the literature primarily for second-order systems),the proposed framework is generalized to establish ESI conditions that include both the activity intervals of the matrices and their switching rates,the latter being governed by a certain logarithmic measure of the normalized magnitudes of discontinuities caused by switching.In effect,(the new,globally averaged)dwell-time is flexibly traded,apparently for the first time,but under specific conditions(related,in part,to the eigenvalues of the matrices),for switching discontinuity-based conditions.Two further novel aspects of the proposed approach are:(i)For second-order matrices,switching lines in phase space can be chosen for periodic switching to stabilize or destabilize the system,and even generate oscillations,depending on the eigenvalues of the system matrices.But for third-(and higher)order matrices,such an analytically tractable(and controlled)periodical switching entails solution of an explicit non-convex multi-parameter optimization problem for which a stochastic optimization algorithm from the literature can be invoked.(ii)Lower and upper bounds on the solutions of the system equations can be quantified to reflect the stability/instability/oscillatory property of the system.Illustrative examples,which demonstrate the novelty of the derived stability and instability conditions,are presented in part 2 which is advisedly to be read along with this part 1 for a coherent merging of theory with practice.展开更多
The paper deals with the g2-stability analysis of multi-input-multi-output(MIMO)systems,governed by integral equations,with a matrix of periodic/aperiodic time-varying gains and a vector of monotone,non-monotone and q...The paper deals with the g2-stability analysis of multi-input-multi-output(MIMO)systems,governed by integral equations,with a matrix of periodic/aperiodic time-varying gains and a vector of monotone,non-monotone and quasi-monotone nonlin-earities.For nonlinear MIMO systems that are described by differential equations,most of the literature on stability is based on an application of quadratic forms as Lyapunov-function candidates.In contrast,a non-Lyapunov framework is employed here to derive new and more general g2-stability conditions in the frequency domain.These conditions have the following features:i)They are expressed in terms of the positive definiteness of the real part of matrices involving the transfer function of the linear time-invariant block and a matrix multiplier function that incorporates the minimax properties of the time-varying linear/nonlinear block,ii)For certain cases of the periodic time-varying gain,they contain,depending on the multiplier function chosen,no restrictions on the normalized rate of variation of the time-varying gain,but,for other periodic/aperiodic time-varying gains,they do.Overall,even when specialized to periodic-coefficient linear and nonlinear MIMO systems,the stability conditions are distinct from and less restrictive than recent results in the literature.No comparable results exist in the literature for aperiodic time-varying gains.Furthermore,some new stability results concerning the dwell-time problem and time-varying gain switching in linear and nonlinear MIMO systems with periodic/aperiodic matrix gains are also presented.Examples are given to illustrate a few of the stability theorems.展开更多
New conditions are derived for the l2-stability of time-varying linear and nonlinear discrete-time multiple-input multipleoutput (MIMO) systems, having a linear time time-invariant block with the transfer function F...New conditions are derived for the l2-stability of time-varying linear and nonlinear discrete-time multiple-input multipleoutput (MIMO) systems, having a linear time time-invariant block with the transfer function F(z), in negative feedback with a matrix of periodic/aperiodic gains A(k), k = 0,1, 2,... and a vector of certain classes of non-monotone/monotone nonlinearities φp(-), without restrictions on their slopes and also not requiring path-independence of their line integrals. The stability conditions, which are derived in the frequency domain, have the following features: i) They involve the positive definiteness of the real part (as evaluated on |z| = 1) of the product of Г (z) and a matrix multiplier function of z. ii) For periodic A(k), one class of multiplier functions can be chosen so as to impose no constraint on the rate of variations A(k), but for aperiodic A(k), which allows a more general multiplier function, constraints are imposed on certain global averages of the generalized eigenvalues of (A(k + 1),A(k)), k = 1, 2 iii) They are distinct from and less restrictive than recent results in the literature.展开更多
文摘In this second part of the paper,bearing the same title as above,but with the last hyphenated phrase replaced by part 1(Theory),the exponential stability and instability(ESI)Theorems 1–4 of part 1 are illustrated by applying them to second-andby,say,third-order linear switched systems with different eigenvalue structures to demonstrate the versatility,novelty and superiority(over many of the results found in the literature,especially for second-order switched lined systems)of the new theoretical results.The computational procedure that is employed with reference to the third-order systems is generic,in the sense that it is applicable to higher(i.e.,greater than third-)order linear switched systems.A pseudo-code for a computer implementation of the stability/instability conditions is also presented.With the principal aim of facilitating an independent reading of this part 2 of the paper,some crucial mathematical notations,definitions and results of part 1 have been repeated,thereby making the contents as self-contained as possible.
文摘Differential inequalities generated in an extended Lyapunov framework are employed in the stability and instability analyses of a class of switched continuous-time second-and higher order linear systems with an arbitrary number of switching matrices.The exponential stability and instability(ESI)conditions so obtained involve the supremum and infimum of ratios of certain quadratic forms of the matrices,leading to global time-averages of their activity intervals.Further,motivated by linear switching system examples of(i)instability with stable matrices and(ii)stability with unstable matrices(found in the literature primarily for second-order systems),the proposed framework is generalized to establish ESI conditions that include both the activity intervals of the matrices and their switching rates,the latter being governed by a certain logarithmic measure of the normalized magnitudes of discontinuities caused by switching.In effect,(the new,globally averaged)dwell-time is flexibly traded,apparently for the first time,but under specific conditions(related,in part,to the eigenvalues of the matrices),for switching discontinuity-based conditions.Two further novel aspects of the proposed approach are:(i)For second-order matrices,switching lines in phase space can be chosen for periodic switching to stabilize or destabilize the system,and even generate oscillations,depending on the eigenvalues of the system matrices.But for third-(and higher)order matrices,such an analytically tractable(and controlled)periodical switching entails solution of an explicit non-convex multi-parameter optimization problem for which a stochastic optimization algorithm from the literature can be invoked.(ii)Lower and upper bounds on the solutions of the system equations can be quantified to reflect the stability/instability/oscillatory property of the system.Illustrative examples,which demonstrate the novelty of the derived stability and instability conditions,are presented in part 2 which is advisedly to be read along with this part 1 for a coherent merging of theory with practice.
文摘The paper deals with the g2-stability analysis of multi-input-multi-output(MIMO)systems,governed by integral equations,with a matrix of periodic/aperiodic time-varying gains and a vector of monotone,non-monotone and quasi-monotone nonlin-earities.For nonlinear MIMO systems that are described by differential equations,most of the literature on stability is based on an application of quadratic forms as Lyapunov-function candidates.In contrast,a non-Lyapunov framework is employed here to derive new and more general g2-stability conditions in the frequency domain.These conditions have the following features:i)They are expressed in terms of the positive definiteness of the real part of matrices involving the transfer function of the linear time-invariant block and a matrix multiplier function that incorporates the minimax properties of the time-varying linear/nonlinear block,ii)For certain cases of the periodic time-varying gain,they contain,depending on the multiplier function chosen,no restrictions on the normalized rate of variation of the time-varying gain,but,for other periodic/aperiodic time-varying gains,they do.Overall,even when specialized to periodic-coefficient linear and nonlinear MIMO systems,the stability conditions are distinct from and less restrictive than recent results in the literature.No comparable results exist in the literature for aperiodic time-varying gains.Furthermore,some new stability results concerning the dwell-time problem and time-varying gain switching in linear and nonlinear MIMO systems with periodic/aperiodic matrix gains are also presented.Examples are given to illustrate a few of the stability theorems.
文摘New conditions are derived for the l2-stability of time-varying linear and nonlinear discrete-time multiple-input multipleoutput (MIMO) systems, having a linear time time-invariant block with the transfer function F(z), in negative feedback with a matrix of periodic/aperiodic gains A(k), k = 0,1, 2,... and a vector of certain classes of non-monotone/monotone nonlinearities φp(-), without restrictions on their slopes and also not requiring path-independence of their line integrals. The stability conditions, which are derived in the frequency domain, have the following features: i) They involve the positive definiteness of the real part (as evaluated on |z| = 1) of the product of Г (z) and a matrix multiplier function of z. ii) For periodic A(k), one class of multiplier functions can be chosen so as to impose no constraint on the rate of variations A(k), but for aperiodic A(k), which allows a more general multiplier function, constraints are imposed on certain global averages of the generalized eigenvalues of (A(k + 1),A(k)), k = 1, 2 iii) They are distinct from and less restrictive than recent results in the literature.