期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
MICROSTRUCTURE AND PROPERTIES OF CuCr25 ALLOYS WITH DIFFERENT Ni CONTENT 被引量:3
1
作者 C.Y.Zhang y.p.wang +2 位作者 Z.M.Yang B.J.Ding Y.L.Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第2期151-154,共4页
CuCr25 alloys containing different Ni content were prepared by vacuum induction melting (VIM). The micro structure and properties were tested. The results show that with the increase of Ni content in CuCr25 alloys, th... CuCr25 alloys containing different Ni content were prepared by vacuum induction melting (VIM). The micro structure and properties were tested. The results show that with the increase of Ni content in CuCr25 alloys, the Cr phase changed from developed dendrite into nodular grains and was drastically refined; the electrical conductivity significantly decrease, but still reach the level of conventional CuCr50 when the Ni content is below 0.5%. The Ni content had little influence on their breakdown strength. The first breakdown sites transferred to the boundary of Cu and Cr phase for CuCr25Ni compared to the Cr phase for CuCr25 without Ni. 展开更多
关键词 CuCr25 contact material vacuum induction melting
在线阅读 下载PDF
Electron kinetic effects in back-stimulated Raman scattering bursts driven by broadband laser pulses
2
作者 Q.K.Liu L.Deng +6 位作者 Q.Wang X.Zhang F.Q.Meng y.p.wang Y.Q.Gao H.B.Cai S.P.Zhu 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第4期54-67,共14页
We examine electron kinetic effects in broadband-laser-driven back-stimulated Raman scattering(BSRS)bursts using particle-in-cell simulations.These bursts occur during the nonlinear stage,causing reflectivity spikes a... We examine electron kinetic effects in broadband-laser-driven back-stimulated Raman scattering(BSRS)bursts using particle-in-cell simulations.These bursts occur during the nonlinear stage,causing reflectivity spikes and generating large numbers of hot electrons.Long-duration simulations are performed to observe burst events,and a simplified model is developed to eliminate the interference of the broadband laser’s random intensity fluctuations.Using the simplified model,we isolate and characterize the spectrum of electron plasma waves.The spectrum changes from a sideband structure to a turbulence-like structure during the burst.A significant asymmetry in the spectrum is observed.This asymmetry is amplified and transferred to electron phase space by high-intensity broadband laser pulses,leading to violent vortex-merging and generation of hot electrons.The proportion of hot electrons increases from 6.76%to 14.7%during a single violent burst event.We demonstrate that kinetic effects profoundly influence the BSRS evolution driven by broadband lasers. 展开更多
关键词 SCATTERING KINETIC simplified
在线阅读 下载PDF
Tilted-axis-cranking covariant density functional theory for high-spin spectroscopy of^(69)Ga
3
作者 y.p.wang Y.K.Wang P.W.Zhao 《Chinese Physics C》 2026年第1期279-283,共5页
The tilted-axis-cranking covariant density functional theory is applied to investigate the three newly-observed positive-parity bands SI,SII,and SIII in^(69)Ga.The energy spectra and angular momenta are calculated,and... The tilted-axis-cranking covariant density functional theory is applied to investigate the three newly-observed positive-parity bands SI,SII,and SIII in^(69)Ga.The energy spectra and angular momenta are calculated,and they agree closely with experimental data.For band SI,pairing correlations are crucial for the states with spin I≤23/2h.Bands SII and SIII are suggested to be signature partner bands with positive and negative signatures,respectively.By analyzing the angular momentum alignments,we reveal that the g9/2 protons and neutrons are crucial in the collective structures of^(69)Ga.The transition probabilitiesB(E2)for these bands are predicted,awaiting further experimental verification. 展开更多
关键词 high-spin spectroscopy collective structure cranking covariant density functional theory
原文传递
Observation of the Crab Nebula with LHAASO-KM2A−a performance study 被引量:12
4
作者 F.Aharonian Q.An +245 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi H.Cai J.T.Cai Z.Cao J.Chang J.F.Chang X.C.Chang B.M.Chen J.Chen L.Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai D.della Volpe B.D'Ettorre Piazzoli X.J.Dong J.H.Fan Y.Z.Fan Z.X.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng Y.L.Feng B.Gao C.D.Gao Q.Gao W.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.C.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang Q.L.Huang W.H.Huang X.T.Huang Z.C.Huang F.Ji X.L.Ji H.Y.Jia K.Jiang Z.J.Jiang C.Jin D.Kuleshov K.Levochkin B.B.Li C.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li K.Li W.L.Li X.Li X.R.Li Y.Li Y.Z.Li Z.Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood W.Mitthumsiri T.Montaruli Y.C.Nan B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi D.Ruffolo V.Rulev A.Sáiz L.Shao O.Shchegolev X.D.Sheng J.R.Shi H.C.Song Yu.V.Stenkin V.Stepanov Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wang C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wang R.N.Wang W.Wang X.G.Wang X.J.Wang X.Y.Wang Y.D.Wang Y.J.Wang y.p.wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang G.Xiao H.B.Xiao G.G.Xin Y.L.Xin Y.Xing D.L.Xu R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang L.X.Zhang P.F.Zhang P.P.Zhang R.Zhang S.R.Zhang S.S.Zhang X.Zhang X.P.Zhang Y.Zhang Y.F.Zhang Y.L.Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou P.Zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Chinese Physics C》 SCIE CAS CSCD 2021年第2期518-530,共13页
A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detecto... A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detector construction is still underway,half of the KM2A array has been operating stably since the end of 2019.In this paper,we present the KM2A data analysis pipeline and the first observation of the Crab Nebula,a standard candle in very high energy γ-ray astronomy.We detect γ-ray signals from the Crab Nebula in both energy ranges of 10-100 TeV and>100 TeV with high significance,by analyzing the KM2A data of 136 live days between December 2019 and May 2020.With the observations,we test the detector performance,including angular resolution,pointing accuracy and cosmic-ray background rejection power.The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE=(1.13±0.05stat±0.08sys)×10^(-14).(E/20 TeV)-309±0.06stat±0.02syscm^(-2) s^(-1) TeV^(-1).It is consistent with previous measurements by other experiments.This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena,such as cosmic PeVatrons,might be discovered. 展开更多
关键词 Γ-RAY Crab Nebula extensive air showers cosmic rays
原文传递
STCF conceptual design report (Volume 1): Physics & detector 被引量:5
5
作者 M.Achasov X.C.Ai +457 位作者 L.P.An R.Aliberti Q.An X.Z.Bai Y.Bai O.Bakina A.Barnyakov V.Blinov V.Bobrovnikov D.Bodrov A.Bogomyagkov A.Bondar I.Boyko Z.H.Bu F.M.Cai H.Cai J.J.Cao Q.H.Cao X.Cao Z.Cao Q.Chang K.T.Chao D.Y.Chen H.Chen H.X.Chen J.F.Chen K.Chen L.L.Chen P.Chen S.L.Chen S.M.Chen S.Chen S.P.Chen W.Chen X.Chen X.F.Chen X.R.Chen Y.Chen Y.Q.Chen H.Y.Cheng J.Cheng S.Cheng T.G.Cheng J.P.Dai L.Y.Dai X.C.Dai D.Dedovich A.Denig I.Denisenko J.M.Dias D.Z.Ding L.Y.Dong W.H.Dong V.Druzhinin D.S.Du Y.J.Du Z.G.Du L.M.Duan D.Epifanov Y.L.Fan S.S.Fang Z.J.Fang G.Fedotovich C.Q.Feng X.Feng Y.T.Feng J.L.Fu J.Gao Y.N.Gao P.S.Ge C.Q.Geng L.S.Geng A.Gilman L.Gong T.Gong B.Gou W.Gradl J.L.Gu A.Guevara L.C.Gui A.Q.Guo F.K.Guo J.C.Guo J.Guo Y.P.Guo Z.H.Guo A.Guskov K.L.Han L.Han M.Han X.Q.Hao J.B.He S.Q.He X.G.He Y.L.He Z.B.He Z.X.Heng B.L.Hou T.J.Hou Y.R.Hou C.Y.Hu H.M.Hu K.Hu R.J.Hu W.H.Hu X.H.Hu Y.C.Hu J.Hua G.S.Huang J.S.Huang M.Huang Q.Y.Huang W.Q.Huang X.T.Huang X.J.Huang Y.B.Huang Y.S.Huang N.Hüsken V.Ivanov Q.P.Ji J.J.Jia S.Jia Z.K.Jia H.B.Jiang J.Jiang S.Z.Jiang J.B.Jiao Z.Jiao H.J.Jing X.L.Kang X.S.Kang B.C.Ke M.Kenzie A.Khoukaz I.Koop E.Kravchenko A.Kuzmin Y.Lei E.Levichev C.H.Li C.Li D.Y.Li F.Li G.Li G.Li H.B.Li H.Li H.N.Li H.J.Li H.L.Li J.M.Li J.Li L.Li L.Li L.Y.Li N.Li P.R.Li R.H.Li S.Li T.Li W.J.Li X.Li X.H.Li X.Q.Li X.H.Li Y.Li Y.Y.Li Z.J.Li H.Liang J.H.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.Liao C.X.Lin D.X.Lin X.S.Lin B.J.Liu C.W.Liu D.Liu F.Liu G.M.Liu H.B.Liu J.Liu J.J.Liu J.B.Liu K.Liu K.Y.Liu K.Liu L.Liu Q.Liu S.B.Liu T.Liu X.Liu Y.W.Liu Y.Liu Y.L.Liu Z.Q.Liu Z.Y.Liu Z.W.Liu I.Logashenko Y.Long C.G.Lu J.X.Lu N.Lu Q.F.Lü Y.Lu Y.Lu Z.Lu P.Lukin F.J.Luo T.Luo X.F.Luo Y.H.Luo H.J.Lyu X.R.Lyu J.P.Ma P.Ma Y.Ma Y.M.Ma F.Maas S.Malde D.Matvienko Z.X.Meng R.Mitchell A.Nefediev Y.Nefedov S.L.Olsen Q.Ouyang P.Pakhlov G.Pakhlova X.Pan Y.Pan E.Passemar Y.P.Pei H.P.Peng L.Peng X.Y.Peng X.J.Peng K.Peters S.Pivovarov E.Pyata B.B.Qi Y.Q.Qi W.B.Qian Y.Qian C.F.Qiao J.J.Qin J.J.Qin L.Q.Qin X.S.Qin T.L.Qiu J.Rademacker C.F.Redmer H.Y.Sang M.Saur W.Shan X.Y.Shan L.L.Shang M.Shao L.Shekhtman C.P.Shen J.M.Shen Z.T.Shen H.C.Shi X.D.Shi B.Shwartz A.Sokolov J.J.Song W.M.Song Y.Song Y.X.Song A.Sukharev J.F.Sun L.Sun X.M.Sun Y.J.Sun Z.P.Sun J.Tang S.S.Tang Z.B.Tang C.H.Tian J.S.Tian Y.Tian Y.Tikhonov K.Todyshev T.Uglov V.Vorobyev B.D.Wan B.L.Wang B.Wang D.Y.Wang G.Y.Wang G.L.Wang H.L.Wang J.Wang J.H.Wang J.C.Wang M.L.Wang R.Wang R.Wang S.B.Wang W.Wang W.P.Wang X.C.Wang X.D.Wang X.L.Wang X.L.Wang X.P.Wang X.F.Wang Y.D.Wang y.p.wang Y.Q.Wang Y.L.Wang Y.G.Wang Z.Y.Wang Z.Y.Wang Z.L.Wang Z.G.Wang D.H.Wei X.L.Wei X.M.Wei Q.G.Wen X.J.Wen G.Wilkinson B.Wu J.J.Wu L.Wu P.Wu T.W.Wu Y.S.Wu L.Xia T.Xiang C.W.Xiao D.Xiao M.Xiao K.P.Xie Y.H.Xie Y.Xing Z.Z.Xing X.N.Xiong F.R.Xu J.Xu L.L.Xu Q.N.Xu X.C.Xu X.P.Xu Y.C.Xu Y.P.Xu Y.Xu Z.Z.Xu D.W.Xuan F.F.Xue L.Yan M.J.Yan W.B.Yan W.C.Yan X.S.Yan B.F.Yang C.Yang H.J.Yang H.R.Yang H.T.Yang J.F.Yang S.L.Yang Y.D.Yang Y.H.Yang Y.S.Yang Y.L.Yang Z.W.Yang Z.Y.Yang D.L.Yao H.Yin X.H.Yin N.Yokozaki S.Y.You Z.Y.You C.X.Yu F.S.Yu G.L.Yu H.L.Yu J.S.Yu J.Q.Yu L.Yuan X.B.Yuan Z.Y.Yuan Y.F.Yue M.Zeng S.Zeng A.L.Zhang B.W.Zhang G.Y.Zhang G.Q.Zhang H.J.Zhang H.B.Zhang J.Y.Zhang J.L.Zhang J.Zhang L.Zhang L.M.Zhang Q.A.Zhang R.Zhang S.L.Zhang T.Zhang X.Zhang Y.Zhang Y.J.Zhang Y.X.Zhang Y.T.Zhang Y.F.Zhang Y.C.Zhang Y.Zhang Y.Zhang Y.M.Zhang Y.L.Zhang Z.H.Zhang Z.Y.Zhang Z.Y.Zhang H.Y.Zhao J.Zhao L.Zhao M.G.Zhao Q.Zhao R.G.Zhao R.P.Zhao Y.X.Zhao Z.G.Zhao Z.X.Zhao A.Zhemchugov B.Zheng L.Zheng Q.B.Zheng R.Zheng Y.H.Zheng X.H.Zhong H.J.Zhou H.Q.Zhou H.Zhou S.H.Zhou X.Zhou X.K.Zhou X.P.Zhou X.R.Zhou Y.L.Zhou Y.Zhou Y.X.Zhou Z.Y.Zhou J.Y.Zhu K.Zhu R.D.Zhu R.L.Zhu S.H.Zhu Y.C.Zhu Z.A.Zhu V.Zhukova V.Zhulanov B.S.Zou Y.B.Zuo 《Frontiers of physics》 SCIE CSCD 2024年第1期1-154,共154页
The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of... The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies. 展开更多
关键词 electron–positron collider tau-charm region high luminosity STCF detector conceptual design
原文传递
Performance of LHAASO-WCDA and observation of the Crab Nebula as a standard candle 被引量:5
6
作者 F.Aharonian Q.An +257 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi H.Cai J.T.Cai Z.Cao Z.Cao J.Chang J.F.Chang X.C.Chang B.M.Chen J.Chen L.Chen L.Chen L.Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu D.della Volpe B.D'Ettorre Piazzoli X.J.Dong J.H.Fan Y.Z.Fan Z.X.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng Y.L.Feng B.Gao C.D.Gao Q.Gao W.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.C.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang Q.L.Huang W.H.Huang X.T.Huang Z.C.Huang F.Ji X.L.Ji H.Y.Jia K.Jiang Z.J.Jiang C.Jin D.Kuleshov K.Levochkin B.B.Li C.Li C.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li K.Li W.L.Li X.Li X.Li X.R.Li Y.Li Y.Z.Li Z.Li Z.Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood W.Mitthumsiri T.Montaruli Y.C.Nan B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi B.Q.Qiao D.Ruffolo V.Rulev A.Saiz L.Shao O.Shchegolev X.D.Sheng J.R.Shi H.C.Song Yu.V.Stenkin V.Stepanov Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wang C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wang R.N.Wang W.Wang W.Wang X.G.Wang X.J.Wang X.Y.Wang Y.D.Wang Y.J.Wang y.p.wang Z.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang G.Xiao H.B.Xiao G.G.Xin Y.L.Xin Y.Xing D.L.Xu R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang L.Zhang L.X.Zhang P.F.Zhang P.P.Zhang R.Zhang S.R.Zhang S.S.Zhang X.Zhang X.P.Zhang Y.Zhang Y.Zhang Y.F.Zhang Y.L.Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou P.Zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Chinese Physics C》 SCIE CAS CSCD 2021年第8期166-181,共16页
The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard ... The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories. 展开更多
关键词 LHAASO-WCDA Crab Nebula angular resolution spectral energy distribution
原文传递
Reconstruction of Cherenkov image bymultiple telescopes of LHAASO-WFCTA 被引量:2
7
作者 F.Aharonian Q.An +272 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi J.T.Cai Zhe Cao Zhen Cao J.Chang J.F.Chang E.S.Chen Liang Chen Liang Chen Long Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen Y.Chen H.L.Cheng N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.D’Ettorre Piazzoli B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu Ddella Volpe K.K.Duan J.H.Fan Y.Z.Fan Z.X.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng X.T.Feng Y.L.Feng B.Gao C.D.Gao L.Q.Gao Q.Gao W.Gao W.K.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu F.L.Guo J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu Q.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang W.H.Huang X.T.Huang X.Y.Huang Y.Huang Z.C.Huang X.L.Ji H.Y.Jia K.Jia K.Jiang Z.J.Jiang M.Jin M.M.Kang T.Ke D.Kuleshov K.Levochkin B.B.Li Cheng Li Cong Li F.Li H.B.Li H.C.Li H.Y.Li J.Li Jian Li Jie Li K.Li WLLi XRLi Xin Li Xin Li YZLi Zhe Li Zhuo Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.Liu Y.N.Liu W.J.Long R.Lu Q.Luo H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood Z.Min W.Mitthumsiri Y.C.Nan Z.W.Ou B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi Y.Q.Qi B.Q.Qiao J.J.Qin D.Ruffolo A.Sáiz C.Y.Shao L.Shao O.Shchegolev X.D.Sheng J.Y.Shi H.C.Song Yu.V.Stenkin V.Stepanov Y.Su Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wang C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wang R.Wang R.N.Wang W.Wang X.G.Wang X.Y.Wang Y.Wang Y.D.Wang Y.J.Wang y.p.wang Z.H.Wang Z.X.Wang Zhen Wang Zheng Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu X.F.Wu Y.S.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang D.X.Xiao G.Xiao G.G.Xin Y.L.Xin Y.Xing Z.Xiong D.L.Xu R.X.Xu L.Xue D.H.Yan J.Z.Yan C.W.Yang F.F.Yang H.W.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.Yue H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang F.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang L.X.Zhang Li Zhang Lu Zhang P.F.Zhang P.P.Zhang R.Zhang S.B.Zhang S.R.Zhang S.S.Zhang X.Zhang X.P.Zhang Y.F.Zhang Y.L.Zhang Yi Zhang Yong Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou P.Zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Radiation Detection Technology and Methods》 CSCD 2022年第4期544-557,共14页
Introduction One of main scientific goals of the Large High Altitude Air Shower Observatory(LHAASO)is to accurately measure the energy spectra of different cosmic ray compositions around the‘knee’region.The Wide Fiel... Introduction One of main scientific goals of the Large High Altitude Air Shower Observatory(LHAASO)is to accurately measure the energy spectra of different cosmic ray compositions around the‘knee’region.The Wide Field-of-View(FoV)Cherenkov Telescope Array(WFCTA),which is one of the main detectors of LHAASO and has 18 telescopes,is built to achieve this goal.Multiple telescopes are put together and point to connected directions for a larger FoV.Method Telescopes are deployed spatially as close as possible,but due to their own size,the distance between two adjacent telescopes is about 10 m.Therefore,the Cherenkov lateral distribution and the parallax between the two telescopes should be considered in the event building process for images crossing over the boundaries of FoVs of the telescopes.An event building method for Cherenkov images measured by multiple telescopes of WFCTA is developed.The performance of the shower measurements using the combined images is evaluated by comparing with showers that are fully contained by a virtual telescope in simulation.Results and conclusion It is proved that the developed event building process can help to increase the FoV of WFCTA by 30%while maintaining the same reconstruction quality,compared to the separate telescope reconstruction method. 展开更多
关键词 METHOD DIRECTIONS CONCLUSION
原文传递
Geometrical reconstruction of fluorescence events observed by the LHAASO experiment 被引量:1
8
作者 F.Aharonian Q.An +258 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi H.Cai J.T.Cai Z.Cao Z.Cao J.Chang J.F.Chang X.C.Chang B.M.Chen J.Chen L.Chen L.Chen L.Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu D.della Volpe B.DEtorre Piazzoli X.J.Dong J.H.Fan Y.Z.Fan Z.X.Fan J.Fang J.Fang C.F.Feng L.Feng S.H.Feng Y.L.Feng B.Gao C.D.Gao Q.Gao W.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.C.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang Q.L.Huang W.H.Huang X.T.Huang Z.C.Huang F.Ji X.L.Ji H.Y.Jia K.Jiang Z.J.Jiang C.Jin D.Kuleshov K.Levochkin B.B.Li C.Li C.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li K.Li W.L.Li X.Li X.Li X.R.Li Y.Li Y.Z.Li Z.Li Z.Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood W.Mitthumsiri T.Montaruli Y.C.Nan B.Y..Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi D.Ruffolo V.Rulev A.Saiz L.Shao O.Shchegolev X.D.Sheng J.R.Shi H.C.Song Yu.V.Stenkin V.Stepanov Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wang C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wang R.N.Wang W.Wang W.Wang X.G.Wang X.J.Wang X.Y.Wang Y.D.Wang Y.J.Wang y.p.wang Z.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang G.Xiao H.B.Xiao G.G.Xin Y.L.Xin Y.Xing D.L.Xu R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang L.Zhang L.X.Zhang P.F.Zhang P.F.Zhang R.Zhang S.R.Zhang S.S.Zhang X.Zhang X.P.Zhang Y.Zhang Y.Zhang Y.F.Zhang Y.L.Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou P.Zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Chinese Physics C》 SCIE CAS CSCD 2021年第4期416-425,共10页
The LHAASO-WFCTA experiment,which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique,uses a new generation of high-performance telescopes.To ensure that the experiment has ex-cellent det... The LHAASO-WFCTA experiment,which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique,uses a new generation of high-performance telescopes.To ensure that the experiment has ex-cellent detection capability associated with the measurement of the energy spectrum,the primary composition of cosmic rays,and so on,an accurate geometrical reconstruction of air-shower events is fundamental.This paper de-scribes the development and testing of geometrical reconstruction for stereo viewed events using the WFCTA(Wide Field of view Cherenkov/Fluorescence Telescope Array)detectors.Two approaches,which take full advantage ofthe WFCTA detectors.are investigated.One is the stereo-angular method,which uses the pointing of triggered SiPMs in the shower trajectory,and the other is the stereo-timing method,which uses the triggering time of the fired SiPMs.The results show that both methods have good geometrical resolution:the resolution of the stereo-timing method is slightly better than the stereo-angular method because the resolution of the latter is slightly limited by the shower track length. 展开更多
关键词 cosmic ray fluorescence telescope stereo observation geometrical reconstruction
原文传递
Prospects for a multi-TeV gamma-ray sky survey with the LHAASO water Cherenkov detector array 被引量:1
9
作者 F.Aharonian V.Alekseenko +212 位作者 Q.An Axikegu L.X.Bai Y.W.Bao D.Bastieri9 X.J.Bi H.Cai Zhe Cao Zhen Cao J.Chang J.F.Chang X.C.Chang S.P.Chao B.M.Chen J.Chen L.Chen L.Chen M.L.Chen M.J.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu B.D'Ettorre Piazzoli J.Fang J.H.Fan Y.Z.Fan C.F Feng L.Feng S.H.Feng Y.L.Feng B.Gao Q.Gao W.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He J.C.He M.Heller S.L.He Y.He C.Hou D.H.Huang Q.L.Huang W.H.Huang X.T.Huang H.B.Hu S.Hu H.Y.Jia K.Jiang F.Ji C.Jin X.L.Ji K.Levochkin E.W.Liang Y.F Liang Cheng Li Cong Li F.Li H.Li H.B.Li H.C.Li H.M.Li J.Li K.Li W.L.Li X.Li X.R.Li Y.Li Z.Li Z.Li B.Liu C.Liu D.Liu H.D.Liu H.Liu J.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma J.R.Mao A.Masood X.H.Ma W.Mitthumsiri T.Montaruli Y.C.Nan P.Pattarakijwanich Z.Y.Pei B.Q.Qiao M.Y.Qi D.Ruffolo V.Rulev A.Sáiz L.Shao O.Shchegolev X.D.Sheng J.R.Shi Y.Stenkin V.Stepanov Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian D.D.Volpe C.Wang H.Wang H.G.Wang J.C.Wang L.Y.Wang W.Wang W.Wang X.G.Wang X.Y.Wang X.J.Wang Y.D.Wang Y.J.Wang Y.N.Wang y.p.wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu G.M.Xiang G.Xiao G.G.Xin Y.Xing R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Q.Yuan Y.H.Yu Z.J.Jiang H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang P.F.Zhang P.P.Zhang S.R.Zhang S.S.Zhang X.Zhang X.P.Zhang Yi Zhang Yong Zhang Y.F.g Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao F.Zheng Y.Zheng J.N.Zhou P.Zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Chinese Physics C》 SCIE CAS CSCD 2020年第6期123-132,共10页
The Water Cherenkov Detector Array(WCDA) is a major component of the Large High Altitude Air Shower Array Observatory(LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under con... The Water Cherenkov Detector Array(WCDA) is a major component of the Large High Altitude Air Shower Array Observatory(LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under construction. WCDA is aimed at the study of TeV γ-rays. In order to evaluate the prospects of searching for TeV γ-ray sources with WCDA, we present a projection of the one-year sensitivity of WCDA to TeV γ-ray sources from TeVCat using an all-sky approach. Out of 128 TeVCat sources observable by WCDA up to a zenith angle of 45°, we estimate that 42 would be detectable in one year of observations at a median energy of 1 TeV. Most of them are Galactic sources, and the extragalactic sources are Active Galactic Nuclei(AGN). 展开更多
关键词 TeVγ-ray astronomy observational prospect LHAASO-WCDA
原文传递
Study on the Characterization and Kinetics of Immobilized Lipase
10
作者 B.Wang y.p.wang Y.L.Wei 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期782-,共1页
1 Rusults Most enzymes, including lipase, play a key role in biotechnology, but their usage is quite limited because of poor recovery, yield, limited re-usability and rapid inactivation in the soluble state. Immobiliz... 1 Rusults Most enzymes, including lipase, play a key role in biotechnology, but their usage is quite limited because of poor recovery, yield, limited re-usability and rapid inactivation in the soluble state. Immobilization enzymes offer advantages over free enzymes because of the availability of a choice of batch or continuous processes, rapid termination of reactions, controlled product formation, ease of enzyme removal from the reaction mixture, and adaptability to various engineering designs.In this ... 展开更多
关键词 LIPASE immobilized enzyme magnetic microsphere enzymatic activity KINETICS
在线阅读 下载PDF
Synthesis of HTEMPO Grafted the Surface of Attapulgite by γ-Glycidoxypropyltrimethoxysilane
11
作者 Y.L.Wei y.p.wang +1 位作者 B.Wang L.Yuan 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期784-,共1页
1 Results Living free radical polymerization has undergone tremendous advancement in the past few years, particularly in the area of nitroxide mediated free radical polymerization. In 1980s, the use of nitroxyl free r... 1 Results Living free radical polymerization has undergone tremendous advancement in the past few years, particularly in the area of nitroxide mediated free radical polymerization. In 1980s, the use of nitroxyl free radicals such as 2,2,6,6-tetramethylpiperidinyl-1-oxyl(TEMPO) to moderate free radical polymerizations was first reported by Rizzardo,et al[1], more and more people began to interested in the polymerization methods which controlled by nitroxide stable free radicals. Recently, some people int... 展开更多
关键词 HTEMPO ATTAPULGITE γ-glycidoxypropyltrimethoxysilane
在线阅读 下载PDF
A dynamic range extension system for LHAASOWCDA-1
12
作者 F.Aharonian Q.An +257 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi H.Cai J.T.Cai Z.Cao Z.Cao J.Chang J.F.Chang X.C.Chang B.M.Chen J.Chen L.Chen L.Chen L.Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu D.della Volpe B.D’Ettorre Piazzoli X.J.Dong J.H.Fan Y.Z.Fan Z.X.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng Y.L.Feng B.Gao C.D.Gao Q.Gao W.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.C.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang Q.L.Huang W.H.Huang X.T.Huang Y.Huang Z.C.Huang F.Ji X.L.Ji H.Y.Jia K.Jiang Z.J.Jiang C.Jin D.Kuleshov K.Levochkin B.B.Li C.Li C.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li K.Li W.L.Li X.Li X.Li X.R.Li Y.Li Y.Z.Li Z.Li Z.Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood W.Mitthumsiri T.Montaruli Y.C.Nan B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi D.Ruffolo V.Rulev A.Sáiz L.Shao O.Shchegolev X.D.Sheng J.R.Shi H.C.Song Yu.V.Stenkin V.Stepanov Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wang C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wang R.N.Wang W.Wang W.Wang X.G.Wang X.J.Wang X.Y.Wang Y.D.Wang Y.J.Wang y.p.wang Z.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang G.Xiao H.B.Xiao G.G.Xin Y.L.Xin Y.Xing D.L.Xu R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang L.Zhang L.X.Zhang P.F.Zhang P.P.Zhang R.Zhang S.R.Zhang S.S.Zhang X.Zhang X.P.Zhang Y.Zhang Y.Zhang Y.F.Zhang Y.L.Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou P.Zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Radiation Detection Technology and Methods》 CSCD 2021年第4期520-530,共11页
Purpose The main scientific goal of LHAASO-WCDA is to survey gamma-ray sources with energy from 100 GeV to 30 TeV.To observe high-energy shower events,especially to measure the energy spectrum of cosmic rays from 100 ... Purpose The main scientific goal of LHAASO-WCDA is to survey gamma-ray sources with energy from 100 GeV to 30 TeV.To observe high-energy shower events,especially to measure the energy spectrum of cosmic rays from 100 TeV to 10 PeV,a dynamic range extension system(WCDA++)is designed to use a 1.5-inch PMT with a dynamic range of four orders of magnitude for each cell in WCDA-1.Method The dynamic range is extended by using these PMTs to measure the effective charge density in the core region of air shower events,which is an important parameter for identifying the composition of primary particles.Result and Conclusion The system has been running for more than one year.In this paper,the details of the design and performance of WCDA++are presented. 展开更多
关键词 LHAASO-WCDA WCDA++ Water Cherenkov detector PERFORMANCE
原文传递
Line-of-shower trigger method to lower energy threshold for GRB detection using LHAASO-WCDA
13
作者 F.Aharonian Q.An +257 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi H.Cai J.T.Cai Z.Cao Z.Cao J.Chang J.F.Chang X.C.Chan B.M.Chen J.Chen L.Chen L.Chen L.Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Chen Y.D.Chen S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu D.della Volpe B.D’Ettorre Piazzoli X.J.Don J.H.Fan Y.Z.Fan Z.X.Fan J.Fang K.Fan C.F.Feng L.Feng S.H.Fen Y.L.Feng B.Gao C.D.Gao Q.Gao W.Gao M.M.Ge L.S.Gen G.H.Gong Q.B.Gou M.H.Gu J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.C.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang Q.L.Huan W.H.Huang X.T.Huang Z.C.Huang F.Ji X.L.Ji H.Y.Jia K.Jiang Z.J.Jiang C.Jin D.Kuleshov K.Levochkin B.B.Li C.Li C.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li K.Li W.L.Li X.Li X.Li X.R.Li Y.Li Y.Z.Li Z.Li Z.Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood W.Mitthumsiri T.Montaruli Y.C.Nan B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi D.Ruffolo V.Rulev A.Sáiz L.Shao O.Shchegolev X.D.Shen J.R.Shi H.C.Song Yu.V.Stenkin V.Stepanov Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wan C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wan R.N.Wang W.Wang W.Wang X.G.Wang X.J.Wan X.Y.Wang Y.D.Wan Y.J.Wan y.p.wang Z.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang G.Xiao H.B.Xiao G.G.Xin Y.L.Xin Y.Xing D.L.Xu R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang J.Y.Yang L.L.Yang M.J.Yan R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang L.Zhang L.X.Zhang P.F.Zhang P.P.Zhang R.Zhang S.R.Zhang S.S.Zhan X.Zhang X.P.Zhan Y.Zhan Y.Zhang Y.F.Zhang Y.L.Zhan B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou P.Zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo The LHAASO Collaboration 《Radiation Detection Technology and Methods》 CSCD 2021年第4期531-541,共11页
Purpose Observation of high energy and very high emission from Gamma Ray Bursts(GRBs)is crucial to study the gigantic explosion and the underline processes.With a large field-of-view and almost full duty cycle,the Wat... Purpose Observation of high energy and very high emission from Gamma Ray Bursts(GRBs)is crucial to study the gigantic explosion and the underline processes.With a large field-of-view and almost full duty cycle,the Water Cherenkov Detector Array(WCDA),a sub-array of the Large High Altitude Air Shower Observatory(LHAASO),is appropriate to monitor the very high energy emission from unpredictable transients such as GRBs.Method Nevertheless,the main issue for an extensive air shower array is the high energy threshold which limits the horizon of the detector.To address this issue a new trigger method is developed in this article to lower the energy threshold of WCDA for GRB observation.Result The proposed method significantly improves the detection efficiency of WCDA for gamma-rays around the GRB direction at 10-300 GeV.The sensitivity of the WCDA for GRB detection with the new trigger method is estimated.The achieved sensitivity of the quarter WCDA array above 10 GeV is comparable with that of Fermi-LAT.The data analysis process and corresponding fluence upper limit for GRB 190719C is presented as an example. 展开更多
关键词 LHAASO WCDA GRB
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部