Magnetosonic waves are an important medium for energy transfer in collisionless space plasma.Magnetosonic waves have been widely investigated in the upstream of the bow shock at Mars.These waves are believed to origin...Magnetosonic waves are an important medium for energy transfer in collisionless space plasma.Magnetosonic waves have been widely investigated in the upstream of the bow shock at Mars.These waves are believed to originate from pickup ions or reflected particles.By utilizing MAVEN spacecraft data,we have observed the occurrence of quasi-perpendicularly propagating magnetosonic emissions near the proton gyrofrequency in the Martian magnetotail region.These plasma waves are associated with a significant enhancement of proton and oxygen flux.The excited magnetosonic waves could possibly heat the protons through resonance and facilitate the ionospheric plasma escape.Our results could be helpful to better understand the Mars’magnetospheric dynamics and offer insights into possible energy redistribution between waves and plasma in the Martian nightside magnetosphere.展开更多
The crystallization process of the eutectic composition of GdAlO_3-Al_2O_3 from the amorphous phase prepared by rapid-quenching of melt that leads to the formation of a cantaloupe skin-like microstructure was investig...The crystallization process of the eutectic composition of GdAlO_3-Al_2O_3 from the amorphous phase prepared by rapid-quenching of melt that leads to the formation of a cantaloupe skin-like microstructure was investigated using focused ion-beam scanning electron microscopy (FIB-SEM) and high-resolution transmission electron microscopy (HR-TEM).The amorphous films were heat-treated at temperatures between 1000 °C and 1500 °C for up to 30min to form the eutectic phases of GdAlO_3 and Al_2O_3.The GdAlO_3 and Al_2O_3 crystal phases that formed from the amorphous phase were identified by FIB-SEM and HR-TEM.Both components began to crystallize and grow from the amorphous phase separately at different temperatures.The formation process of these crystal phases was different from that of the ordinary eutectic microstructure solidified from the GdAlO_3-Al_2O_3 system.Therefore,the observed structure is termed "eutectic-like" for distinction.The microstructures formed from the amorphous phases at sufficiently high temperatures consisted of ultra-fine microstructures of individually crystallized components and were similar to ordinary eutectic microstructures.By heat-treating the amorphous films at 1500 °C for either 2 min,8min or 30min,the ultra-fine components of GdAlO_3 and Al_2O_3 were found to crystallize following a eutectic-like stage after 8min of heat treatment.展开更多
To improve the surface properties,lining of magnesium alloys with hard powders by shot peening was carried out in order. The hard powders were tried to bond to the workpiece surface due to the collision of many shots....To improve the surface properties,lining of magnesium alloys with hard powders by shot peening was carried out in order. The hard powders were tried to bond to the workpiece surface due to the collision of many shots.In order to fix the hard powders to the surface of the workpiece,the powders were set on an uneven surface.To easily facilitate fixing of powders,lining of the workpiece with the powder sandwiched between two aluminum foil sheets was also attempted.In this experiment,a centrifugal shot peening machine with an electrical heater was employed.The workpieces were magnesium alloys AZ31B and AZ91D,and the hard powders were commercial cemented carbide,alumina,and zirconia.The joinability of hard powders near the lined surface was observed by a optical microscope.The wear resistance was also evaluated by a wear test.The hard powders were successfully bonded to the surface of workpieces by the shot lining process.The results show that the present method is effective in wear resistance of the magnesium alloys.展开更多
基金the National Natural Science Foundation of China(42030101,42204158)Shanghai Pujiang Program(No.21PJD078)+1 种基金Shanghai Science and Technology Innovation Action Plan(No.21DZ1206100)the Fundamental Research Funds for the Central Universities.
文摘Magnetosonic waves are an important medium for energy transfer in collisionless space plasma.Magnetosonic waves have been widely investigated in the upstream of the bow shock at Mars.These waves are believed to originate from pickup ions or reflected particles.By utilizing MAVEN spacecraft data,we have observed the occurrence of quasi-perpendicularly propagating magnetosonic emissions near the proton gyrofrequency in the Martian magnetotail region.These plasma waves are associated with a significant enhancement of proton and oxygen flux.The excited magnetosonic waves could possibly heat the protons through resonance and facilitate the ionospheric plasma escape.Our results could be helpful to better understand the Mars’magnetospheric dynamics and offer insights into possible energy redistribution between waves and plasma in the Martian nightside magnetosphere.
基金part of the study under the "Human Resource Development Center for Economic Region Leading Industry" Projectsupported by the Ministry of Education,Science & Technology(MEST)by the National Research Foundation of Korea(NRF)
文摘The crystallization process of the eutectic composition of GdAlO_3-Al_2O_3 from the amorphous phase prepared by rapid-quenching of melt that leads to the formation of a cantaloupe skin-like microstructure was investigated using focused ion-beam scanning electron microscopy (FIB-SEM) and high-resolution transmission electron microscopy (HR-TEM).The amorphous films were heat-treated at temperatures between 1000 °C and 1500 °C for up to 30min to form the eutectic phases of GdAlO_3 and Al_2O_3.The GdAlO_3 and Al_2O_3 crystal phases that formed from the amorphous phase were identified by FIB-SEM and HR-TEM.Both components began to crystallize and grow from the amorphous phase separately at different temperatures.The formation process of these crystal phases was different from that of the ordinary eutectic microstructure solidified from the GdAlO_3-Al_2O_3 system.Therefore,the observed structure is termed "eutectic-like" for distinction.The microstructures formed from the amorphous phases at sufficiently high temperatures consisted of ultra-fine microstructures of individually crystallized components and were similar to ordinary eutectic microstructures.By heat-treating the amorphous films at 1500 °C for either 2 min,8min or 30min,the ultra-fine components of GdAlO_3 and Al_2O_3 were found to crystallize following a eutectic-like stage after 8min of heat treatment.
文摘To improve the surface properties,lining of magnesium alloys with hard powders by shot peening was carried out in order. The hard powders were tried to bond to the workpiece surface due to the collision of many shots.In order to fix the hard powders to the surface of the workpiece,the powders were set on an uneven surface.To easily facilitate fixing of powders,lining of the workpiece with the powder sandwiched between two aluminum foil sheets was also attempted.In this experiment,a centrifugal shot peening machine with an electrical heater was employed.The workpieces were magnesium alloys AZ31B and AZ91D,and the hard powders were commercial cemented carbide,alumina,and zirconia.The joinability of hard powders near the lined surface was observed by a optical microscope.The wear resistance was also evaluated by a wear test.The hard powders were successfully bonded to the surface of workpieces by the shot lining process.The results show that the present method is effective in wear resistance of the magnesium alloys.