期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Experimental evidence for the formation mechanism of metallic catalyst-free carbon nanotubes 被引量:2
1
作者 y.h.tang X.C.Li +3 位作者 J.L.Li L.W.Lin H.F.Xu B.Y.Huang 《Nano-Micro Letters》 SCIE EI CAS 2010年第1期18-21,共4页
Our work reported that the so-called pure carbon nanotubes(CNTs)can be synthesized without metallic catalyst by chemical vapor deposition(CVD).The as-prepared CNTs have average diameter of 50 nm and length over severa... Our work reported that the so-called pure carbon nanotubes(CNTs)can be synthesized without metallic catalyst by chemical vapor deposition(CVD).The as-prepared CNTs have average diameter of 50 nm and length over several microns.Analysis of intermediate objects in the products indicates that their formation mechanism follows the wire-to-tube model.Besides,according to thermodynamic analysis of the driving force combing with experimental results,we find that the thermal gradient can effectively favor the formation of CNTs in our metallic catalyst-free CVD. 展开更多
关键词 Carbon nanotubes CATALYST-FREE CVD Formation mechanism
在线阅读 下载PDF
Modeling biomembranes and red blood cells by coarse-grained particle methods 被引量:1
2
作者 H.LI H.Y.CHANG +3 位作者 J.YANG L.LU y.h.tang G.LYKOTRAFITIS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第1期3-20,共18页
In this work, the previously developed coarse-grained (CG) particle models for biomembranes and red blood cells (RBCs) are reviewed, and the advantages of the CG particle methods over the continuum and atomistic s... In this work, the previously developed coarse-grained (CG) particle models for biomembranes and red blood cells (RBCs) are reviewed, and the advantages of the CG particle methods over the continuum and atomistic simulations for modeling biological phenomena are discussed. CG particle models can largely increase the length scale and time scale of atomistic simulations by eliminating the fast degrees of freedom while preserving the mesoscopic structures and properties of the simulated system. Moreover, CG particle models can be used to capture the microstructural alternations in diseased RBCs and simulate the topological changes of biomembranes and RBCs, which are the major challenges to the typical continuum representations of membranes and RBCs. The power and versatility of CG particle methods are demonstrated:through simulating the dynamical processes mvolving significant topological .changes e.g. lipid self-assembly vesicle fusion and membrane budding. 展开更多
关键词 coarse-grained molecular dynamics lipid bilayer red blood cell membrane membrane fusion
在线阅读 下载PDF
太阳大气中的磁流体力学现象(英文)
3
作者 C.Fang y.h.tang 《紫金山天文台台刊》 北大核心 1994年第2期5-15,共11页
Solar atmosphere is a rotating plasma shell filled by magnetic field. The coupling between the magnetic and the movement of plasma makes a variety of magnetohydrodynamic phenomena in the solar atmosphere. After giving... Solar atmosphere is a rotating plasma shell filled by magnetic field. The coupling between the magnetic and the movement of plasma makes a variety of magnetohydrodynamic phenomena in the solar atmosphere. After giving a brief introduction on the basic theoretical regime of solar MHD, we describe mainly the magnetohydrodynamic aspects of solar flares, solar prominences (filaments) and flux tubes with different scales. Some future works are also discussd. 展开更多
关键词 磁流体 太阳大气 力学现象 Atmosphere 英文 asymmetric VLASOV FILLED HAVE Schro
全文增补中
Acceleration of 60 MeV proton beams in the commissioning experiment of the SULF-10 PW laser 被引量:6
4
作者 A.X.Li C.Y.Qin +26 位作者 H.Zhang S.Li L.L.Fan Q.S.Wang T.J.Xu N.W.Wang L.H.Yu Y.Xu Y.Q.Liu C.Wang X.L.Wang Z.X.Zhang X.Y.Liu P.L.Bai Z.B.Gan X.B.Zhang X.B.Wang C.Fan Y.J.Sun y.h.tang B.Yao X.Y.Liang Y.X.Leng B.F.Shen L.L.Ji R.X.Li Z.Z.Xu 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2022年第4期36-44,共9页
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility(SULF).The peak power reaches 2.4 PW on target without the last amplifying... We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility(SULF).The peak power reaches 2.4 PW on target without the last amplifying during the experiment.The laser energy of 72±9 J is directed to a focal spot of approximately 6μm diameter(full width at half maximum)in 30 fs pulse duration,yielding a focused peak intensity around 2.0×10^(21)W/cm^(2).The first laser-proton acceleration experiment is performed using plain copper and plastic targets.High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4μm via target normal sheath acceleration.For plastic targets of tens of nanometers thick,the proton cut-off energy is approximately 20 MeV,showing ring-like or flamented density distributions.These experimental results reflect the capabilities of the SULF-10 PW beamline,for example,both ultrahigh intensity and relatively good beam contrast.Further optimization for these key parameters is underway,where peak laser intensities of 10^(22)-10^(23)w/cm^(2)are anticipated to support various experiments on extreme field physics. 展开更多
关键词 high-energy proton source laser-plasma interaction ultraintense lasers
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部