期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti_(2)Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting 被引量:19
1
作者 H.Z.Lu L.H.Liu +8 位作者 C.Yang X.Luo C.H.Song Z.Wang J.Wang Y.D.Su y.f.ding L.C.Zhang Y.Y.Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第6期205-216,共12页
The excellent shape memory and mechanical properties of Ti Ni shape memory alloys(SMAs) fabricated using selective laser melting(SLM) are highly desirable for a wide range of critical applications. In this study, we e... The excellent shape memory and mechanical properties of Ti Ni shape memory alloys(SMAs) fabricated using selective laser melting(SLM) are highly desirable for a wide range of critical applications. In this study, we examined the simultaneous enhancement of mechanical and shape memory properties using heat-treatment homogenization of Ti_(2)Ni precipitates in a Ti_(50.6)Ni_(49.4)SMA fabricated using SLM. Specifically, because of the complete solution treatment, nanoscale spherical Ti_(2)Ni precipitates were homogeneously dispersed throughout the grain interior. Interestingly, the resultant SMA exhibited an ultrahigh tensile strength of 880 ± 13 MPa, a large elongation of 22.4 ± 0.4%, and an excellent shape memory effect, with a recovery rate of > 98% and ultrahigh recoverable strain of 5.32% after ten loading–unloading cycles. These simultaneously enhanced properties are considerably superior than those of most previously reported Ti Ni SMAs fabricated using additive manufacturing. Fundamentally, the enhancement in tensile strength is ascribed to precipitation strengthening and work hardening, and the large plasticity is mainly attributed to the homogeneous nanoscale globular Ti_(2)Ni precipitates, which effectively impeded the rapid propagation of microcracks. Furthermore, the enhanced shape memory properties are derived from the suppression of dislocation movement and formation of retained stabilized martensite by the presence of high-density dislocations, nanoscale Ti_(2)Ni precipitates, and abundant interfaces. The obtained results provide insight into the enhancement of the two types of properties in Ti Ni SMAs and will accelerate the wider application of SMAs. 展开更多
关键词 Shape memory alloy Selective laser melting Heat treatment Mechanical properties Shape memory properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部