A mathematical model has been formulated in accordance with cell chemotaxis and relevant experimental data. A three-dimensional lattice Boltzmann method was used for numerical simulation. The present study observed th...A mathematical model has been formulated in accordance with cell chemotaxis and relevant experimental data. A three-dimensional lattice Boltzmann method was used for numerical simulation. The present study observed the effects of glial scar size and inhibitor concentration on regenerative axonal growth following spinal cord transection. The simulation test comprised two parts: (1) when release rates of growth inhibitor and promoter were constant, the effects of glial scar size on axonal growth rate were analyzed, and concentrations of inhibitor and promoters located at the moving growth cones were recorded. (2) When the glial scar size was constant, the effects of inhibitor and promoter release rates on axonal growth rate were analyzed, and inhibitor and promoter concentrations at the moving growth cones were recorded. Results demonstrated that (1) a larger glial scar and a higher release rate of inhibitor resulted in a reduced axonal growth rate. (2) The axonal growth rate depended on the ratio of inhibitor to promoter concentrations at the growth cones. When the average ratio was 〈 1.5, regenerating axons were able to grow and successfully contact target cells.展开更多
Methane(CH_(4))controllable activation is the key process for CH_(4)upgrading,which is sensitive to the surface oxygen species.The high thermal conductivity and superb thermal stability of the hexagonal boron nitride(...Methane(CH_(4))controllable activation is the key process for CH_(4)upgrading,which is sensitive to the surface oxygen species.The high thermal conductivity and superb thermal stability of the hexagonal boron nitride(h-BN)sheet makes a single transition metal atom doped hexagonal boron nitride monolayer(TM-BN)possible to be a promising material for catalyzing methane partial oxidation.The performances of 24 TM-BNs for CH_(4)activation are systematically investigated during the CH_(4)oxidation by means of first-principles computation.The calculation results unravel the periodic va riation trends for the stability of TM-BN,the adsorption strength and the kind of O_(2)species,and the resulting CH_(4)activation performance on TM-BNs.The formed peroxide O_(2)^(2-)of which the O-O bond could be broken and O-anions are found to be reactive oxygen species for CH_(4)activation under the mild conditions.It is found that the redox potential of TM center,including its valence electron number,coordination environment,and the work function of TM-BN,is the underlying reason for the formation of different oxygen species and the resulting activity for CH_(4)oxidative dehydrogenation.展开更多
基金supported by the National Natural Science Foundation of China,No. 10572085Shanghai Leading Academic Discipline Projects,No. S30106
文摘A mathematical model has been formulated in accordance with cell chemotaxis and relevant experimental data. A three-dimensional lattice Boltzmann method was used for numerical simulation. The present study observed the effects of glial scar size and inhibitor concentration on regenerative axonal growth following spinal cord transection. The simulation test comprised two parts: (1) when release rates of growth inhibitor and promoter were constant, the effects of glial scar size on axonal growth rate were analyzed, and concentrations of inhibitor and promoters located at the moving growth cones were recorded. (2) When the glial scar size was constant, the effects of inhibitor and promoter release rates on axonal growth rate were analyzed, and inhibitor and promoter concentrations at the moving growth cones were recorded. Results demonstrated that (1) a larger glial scar and a higher release rate of inhibitor resulted in a reduced axonal growth rate. (2) The axonal growth rate depended on the ratio of inhibitor to promoter concentrations at the growth cones. When the average ratio was 〈 1.5, regenerating axons were able to grow and successfully contact target cells.
基金financial support from the National Natural Science Foundation of China(NSFC,Nos.21673072 and 91845111)Program of Shanghai Subject Chief Scientist(No.17XD1401400)+1 种基金Shanghai Science and Technology Committee(No.17520750100)the Fundamental Research Funds for the Central Universities。
文摘Methane(CH_(4))controllable activation is the key process for CH_(4)upgrading,which is sensitive to the surface oxygen species.The high thermal conductivity and superb thermal stability of the hexagonal boron nitride(h-BN)sheet makes a single transition metal atom doped hexagonal boron nitride monolayer(TM-BN)possible to be a promising material for catalyzing methane partial oxidation.The performances of 24 TM-BNs for CH_(4)activation are systematically investigated during the CH_(4)oxidation by means of first-principles computation.The calculation results unravel the periodic va riation trends for the stability of TM-BN,the adsorption strength and the kind of O_(2)species,and the resulting CH_(4)activation performance on TM-BNs.The formed peroxide O_(2)^(2-)of which the O-O bond could be broken and O-anions are found to be reactive oxygen species for CH_(4)activation under the mild conditions.It is found that the redox potential of TM center,including its valence electron number,coordination environment,and the work function of TM-BN,is the underlying reason for the formation of different oxygen species and the resulting activity for CH_(4)oxidative dehydrogenation.