In this paper, we propose a new approach to the problem of degree reduction of Bézier curves based on the given endpoint constraints. A differential term is added for the purpose of controlling the smoothness to ...In this paper, we propose a new approach to the problem of degree reduction of Bézier curves based on the given endpoint constraints. A differential term is added for the purpose of controlling the smoothness to a certain extent. Considering the adjustment of second derivative in curve design, a modified objective function including two parts is constructed here. One part is a kind of measure of the distance between original high order Bézier curve and degree-reduced curve. The other part represents the second derivative of degree-reduced curve. We tackle two kinds of conditions which are position vector constraint and tangent vector constraint respectively. The explicit representations of unknown points are presented. Some examples are illustrated to show the influence of the differential terms to approximation and smoothness effect.展开更多
Four new trigonometric Bernstein-like basis functions with two exponential shape pa- rameters are constructed, based on which a class of trigonometric Bézier-like curves, anal- ogous to the cubic Bézier curv...Four new trigonometric Bernstein-like basis functions with two exponential shape pa- rameters are constructed, based on which a class of trigonometric Bézier-like curves, anal- ogous to the cubic Bézier curves, is proposed. The corner cutting algorithm for computing the trigonometric Bézier-like curves is given. Any arc of an eliipse or a parabola can be represented exactly by using the trigonometric Bézier-like curves. The corresponding trigonometric Bernstein-like operator is presented and the spectral analysis shows that the trigonometric Bézier-like curves are closer to the given control polygon than the cu- bic Bézier curves. Based on the new proposed trigonometric Bernstein-like basis, a new class of trigonometric B-spline-like basis functions with two local exponential shape pa- rameters is constructed. The totally positive property of the trigonometric B-spline-like basis is proved. For different values of the shape parameters, the associated trigonometric B-spline-like curves can be C2 N FC3 continuous for a non-uniform knot vector, and C3 or C5 continuous for a uniform knot vector. A new class of trigonometric Bézier-like basis functions over triangular domain is also constructed. A de Casteljau-type algorithm for computing the associated trigonometric Bézier-like patch is developed. The conditions for G1 continuous joining two trigonometric Bézier-like patches over triangular domain arededuced.展开更多
文摘In this paper, we propose a new approach to the problem of degree reduction of Bézier curves based on the given endpoint constraints. A differential term is added for the purpose of controlling the smoothness to a certain extent. Considering the adjustment of second derivative in curve design, a modified objective function including two parts is constructed here. One part is a kind of measure of the distance between original high order Bézier curve and degree-reduced curve. The other part represents the second derivative of degree-reduced curve. We tackle two kinds of conditions which are position vector constraint and tangent vector constraint respectively. The explicit representations of unknown points are presented. Some examples are illustrated to show the influence of the differential terms to approximation and smoothness effect.
基金We, wish to express our gratitude to the referees for their valuable re- marks for improvements. The research is supported by the National Natural Science Foun-dation of China (No. 60970097, No. 11271376), Postdoctoral Science Foundation of China (2015M571931), and Graduate Students Scientific Research Innovation Project of Hunan Province (No. CX2012Blll).
文摘Four new trigonometric Bernstein-like basis functions with two exponential shape pa- rameters are constructed, based on which a class of trigonometric Bézier-like curves, anal- ogous to the cubic Bézier curves, is proposed. The corner cutting algorithm for computing the trigonometric Bézier-like curves is given. Any arc of an eliipse or a parabola can be represented exactly by using the trigonometric Bézier-like curves. The corresponding trigonometric Bernstein-like operator is presented and the spectral analysis shows that the trigonometric Bézier-like curves are closer to the given control polygon than the cu- bic Bézier curves. Based on the new proposed trigonometric Bernstein-like basis, a new class of trigonometric B-spline-like basis functions with two local exponential shape pa- rameters is constructed. The totally positive property of the trigonometric B-spline-like basis is proved. For different values of the shape parameters, the associated trigonometric B-spline-like curves can be C2 N FC3 continuous for a non-uniform knot vector, and C3 or C5 continuous for a uniform knot vector. A new class of trigonometric Bézier-like basis functions over triangular domain is also constructed. A de Casteljau-type algorithm for computing the associated trigonometric Bézier-like patch is developed. The conditions for G1 continuous joining two trigonometric Bézier-like patches over triangular domain arededuced.